Search results for "37D20"

showing 4 items of 4 documents

Fractal Weyl law for open quantum chaotic maps

2014

We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition.

[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesSemiclassical physicsDynamical Systems (math.DS)35B34 37D20 81Q50 81U05Upper and lower boundsMSC: 35B34 37D20 81Q50 81U05Fractal Weyl lawQuantization (physics)Mathematics - Analysis of PDEs[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (miscellaneous)Fractal[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Dynamical SystemsQuantumMathematical physicsMathematicsScattering[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences - Chaotic DynamicsWeyl lawResonancesQuantum chaotic scattering[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Chaotic Dynamics (nlin.CD)Statistics Probability and UncertaintyOpen quantum mapComplex planeAnalysis of PDEs (math.AP)Annals of Mathematics
researchProduct

Building Anosov flows on $3$–manifolds

2014

We prove a result allowing to build (transitive or non-transitive) Anosov flows on 3-manifolds by gluing together filtrating neighborhoods of hyperbolic sets. We give several applications; for example: 1. we build a 3-manifold supporting both of a transitive Anosov vector field and a non-transitive Anosov vector field; 2. for any n, we build a 3-manifold M supporting at least n pairwise different Anosov vector fields; 3. we build transitive attractors with prescribed entrance foliation; in particular, we construct some incoherent transitive attractors; 4. we build a transitive Anosov vector field admitting infinitely many pairwise non-isotopic trans- verse tori.

[ MATH ] Mathematics [math]Pure mathematicsAnosov flowMathematics::Dynamical Systems3–manifolds[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)$3$–manifolds01 natural sciencesFoliationsSet (abstract data type)MSC: Primary: 37D20 Secondary: 57M9957M99Diffeomorphisms0103 physical sciencesAttractorFOS: Mathematics0101 mathematics[MATH]Mathematics [math]Mathematics - Dynamical SystemsManifoldsMathematics::Symplectic Geometry3-manifold37D20 57MMathematicsTransitive relation37D20010308 nuclear & particles physics010102 general mathematicsTorusMathematics::Geometric TopologyFlow (mathematics)Anosov flowsFoliation (geology)Vector fieldhyperbolic plugsGeometry and Topologyhyperbolic basic set3-manifold
researchProduct

Stabilization of heterodimensional cycles

2011

We consider diffeomorphisms $f$ with heteroclinic cycles associated to saddles $P$ and $Q$ of different indices. We say that a cycle of this type can be stabilized if there are diffeomorphisms close to $f$ with a robust cycle associated to hyperbolic sets containing the continuations of $P$ and $Q$. We focus on the case where the indices of these two saddles differ by one. We prove that, excluding one particular case (so-called twisted cycles that additionally satisfy some geometrical restrictions), all such cycles can be stabilized.

Pure mathematicsMathematics::Dynamical Systems37C29 37D20 37D30Applied MathematicsFOS: MathematicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsDynamical Systems (math.DS)Mathematics - Dynamical SystemsType (model theory)Focus (optics)Mathematical PhysicsMathematicsNonlinearity
researchProduct

Internal perturbations of homoclinic classes:non-domination, cycles, and self-replication

2010

Conditions are provided under which lack of domination of a homoclinic class yields robust heterodimensional cycles. Moreover, so-called viral homoclinic classes are studied. Viral classes have the property of generating copies of themselves producing wild dynamics (systems with infinitely many homoclinic classes with some persistence). Such wild dynamics also exhibits uncountably many aperiodic chain recurrence classes. A scenario (related with non-dominated dynamics) is presented where viral homoclinic classes occur. A key ingredient are adapted perturbations of a diffeomorphism along a periodic orbit. Such perturbations preserve certain homoclinic relations and prescribed dynamical prope…

Nonlinear Sciences::Chaotic DynamicsMathematics::Dynamical Systems37C29 37D20 37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]FOS: Mathematics[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS]Dynamical Systems (math.DS)Mathematics - Dynamical Systems
researchProduct