Search results for "3C"

showing 10 items of 396 documents

Boundary reconstruction for the broken ray transform

2013

We reduce boundary determination of an unknown function and its normal derivatives from the (possibly weighted and attenuated) broken ray data to the injectivity of certain geodesic ray transforms on the boundary. For determination of the values of the function itself we obtain the usual geodesic ray transform, but for derivatives this transform has to be weighted by powers of the second fundamental form. The problem studied here is related to Calder\'on's problem with partial data.

Mathematics - Differential GeometryDifferential Geometry (math.DG)GeodesicAstrophysics::High Energy Astrophysical PhenomenaGeneral MathematicsSecond fundamental formta111Mathematical analysisFOS: MathematicsBoundary (topology)Function (mathematics)53C65 78A05 (Primary) 35R30 58J32 (Secondary)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Equivalence of quasiregular mappings on subRiemannian manifolds via the Popp extension

2016

We show that all the common definitions of quasiregular mappings $f\colon M\to N$ between two equiregular subRiemannian manifolds of homogeneous dimension $Q\geq 2$ are quantitatively equivalent with precise dependences of the quasiregularity constants. As an immediate consequence, we obtain that if $f$ is $1$-quasiregular according to one of the definitions, then it is also $1$-quasiregular according to any other definition. In particular, this recovers a recent theorem of Capogna et al. on the equivalence of $1$-quasiconformal mappings. Our main results answer affirmatively a few open questions from the recent research. The main new ingredient in our proofs is the distortion estimates for…

Mathematics - Differential GeometryDifferential Geometry (math.DG)Mathematics::Complex VariablesMathematics - Complex VariablesFOS: MathematicsComplex Variables (math.CV)53C17 30C65 58C06 58C25
researchProduct

Failure of the local-to-global property for CD(K,N) spaces

2016

Given any K and N we show that there exists a compact geodesic metric measure space satisfying locally the CD(0,4) condition but failing CD(K,N) globally. The space with this property is a suitable non convex subset of R^2 equipped with the l^\infty-norm and the Lebesgue measure. Combining many such spaces gives a (non compact) complete geodesic metric measure space satisfying CD(0,4) locally but failing CD(K,N) globally for every K and N.

Mathematics - Differential GeometryDiscrete mathematicsProperty (philosophy)GeodesicLebesgue measureExistential quantification010102 general mathematicsMetric Geometry (math.MG)Space (mathematics)01 natural sciencesMeasure (mathematics)Theoretical Computer ScienceMathematics (miscellaneous)Mathematics - Metric GeometryDifferential Geometry (math.DG)0103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematics53C23 (Primary) 28A33 49Q20 (Secondary)MathematicsANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
researchProduct

Counting common perpendicular arcs in negative curvature

2013

Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…

Mathematics - Differential GeometryGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]37D40 37A25 53C22 30F4001 natural sciencesDomain (mathematical analysis)Bowen-Margulis measurecommon perpendicularequidistributiondecay of correlation0502 economics and businessortholength spectrummixingAsymptotic formulaSectional curvatureTangent vectorMathematics - Dynamical Systems0101 mathematicsExponential decayskinning measurelaskeminenMathematicsconvexityApplied Mathematicsta111010102 general mathematics05 social sciencesMathematical analysisRegular polygonnegative curvatureRiemannian manifoldGibbs measureManifoldKleinian groups[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]countingMathematics::Differential Geometrygeodesic arc050203 business & management
researchProduct

Bicycle paths, elasticae and sub-Riemannian geometry

2020

We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).

Mathematics - Differential GeometryGeodesicGeneral Physics and AstronomyGeometryRiemannian geometry01 natural sciencessymbols.namesakeMathematics - Metric GeometryClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsMathematical PhysicsMathematics53C17 (Primary) 53A17 53A04 (Secondary)Group (mathematics)Plane (geometry)Applied Mathematics010102 general mathematicsMetric Geometry (math.MG)Statistical and Nonlinear Physics010101 applied mathematicsDifferential Geometry (math.DG)Mathematics - Classical Analysis and ODEsMetric (mathematics)Euler's formulasymbolsNonlinearity
researchProduct

Elementary deformations and the hyperK\"ahler-quaternionic K\"ahler correspondence

2014

The hyperK\"ahler-quaternionic K\"ahler correspondence constructs quaternionic K\"ahler metrics from hyperK\"ahler metrics with a rotating circle symmetry. We discuss how this may be interpreted as a combination of the twist construction with the concept of elementary deformation, surveying results of our forthcoming paper. We outline how this leads to a uniqueness statement for the above correspondence and indicate how basic examples of c-map constructions may be realised in this context.

Mathematics - Differential GeometryHigh Energy Physics - Theory53C26Mathematics::Complex VariablesMathematics::Differential GeometryMathematics::Symplectic Geometry
researchProduct

Quillen superconnections and connections on supermanifolds

2013

Given a supervector bundle $E = E_0\oplus E_1 \to M$, we exhibit a parametrization of Quillen superconnections on $E$ by graded connections on the Cartan-Koszul supermanifold $(M;\Omega (M))$. The relation between the curvatures of both kind of connections, and their associated Chern classes, is discussed in detail. In particular, we find that Chern classes for graded vector bundles on split supermanifolds can be computed through the associated Quillen superconnections.

Mathematics - Differential GeometryHigh Energy Physics - TheoryChern classGeneral Physics and AstronomyVector bundleFOS: Physical sciences53C07 58C50 81T13Mathematical Physics (math-ph)Mathematics::Algebraic TopologyAlgebraHigh Energy Physics::TheoryDifferential Geometry (math.DG)High Energy Physics - Theory (hep-th)Mathematics::K-Theory and HomologyBundleSupermanifoldFOS: MathematicsGeometry and TopologyMathematics::Differential GeometryParametrizationMathematics::Symplectic GeometryMathematical PhysicsMathematics
researchProduct

Boundary rigidity for Randers metrics

2021

If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.

Mathematics - Differential GeometryInverse problemsboundary rigidityMathematical analysisBoundary (topology)Rigidity (psychology)ArticlesInverse problemtravel time tomography53C24 53A35 86A22Seismic waveDifferential Geometry (math.DG)Norm (mathematics)Metric (mathematics)FOS: MathematicsMathematics::Metric GeometryMathematics::Differential GeometryMathematics::Symplectic GeometryMathematicsAnnales Fennici Mathematici
researchProduct

Isometries of nilpotent metric groups

2016

We consider Lie groups equipped with arbitrary distances. We only assume that the distance is left-invariant and induces the manifold topology. For brevity, we call such object metric Lie groups. Apart from Riemannian Lie groups, distinguished examples are sub-Riemannian Lie groups and, in particular, Carnot groups equipped with Carnot-Carath\'eodory distances. We study the regularity of isometries, i.e., distance-preserving homeomorphisms. Our first result is the analyticity of such maps between metric Lie groups. The second result is that if two metric Lie groups are connected and nilpotent then every isometry between the groups is the composition of a left translation and an isomorphism.…

Mathematics - Differential GeometryIsometriesPure mathematicsA ne transformationsGeneral Mathematics22E25 53C30 22F30Group Theory (math.GR)01 natural sciencesisometriesMathematics - Metric GeometryetäisyysFOS: MathematicsMathematics (all)Mathematics::Metric GeometryA ne transformations; Isometries; Nilpotent groups; Nilradical; Mathematics (all)0101 mathematicsdistanceMathematicsLie groupsmatematiikkamathematicsta111010102 general mathematicsLie groupMetric Geometry (math.MG)nilpotent groupsnilradicalComposition (combinatorics)Manifoldaffine transformationsNilpotentDifferential Geometry (math.DG)Nilpotent groupsMetric (mathematics)IsometryNilradicalIsomorphismMathematics - Group TheoryCounterexampleJournal de l’École polytechnique — Mathématiques
researchProduct

Differentiability of the isoperimetric profile and topology of analytic Riemannian manifolds

2012

Abstract We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres. To cite this article: R. Grimaldi et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Mathematics - Differential GeometryIsoperimetric dimensionRiemannian geometryTopology01 natural sciencessymbols.namesakeRicci-flat manifoldFOS: MathematicsDifferentiable functionMorse theory0101 mathematicsTopology (chemistry)Computer Science::DatabasesIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsGeneral Medicinecalibration53C20;49Q20;14P15;32B20010101 applied mathematicsDifferential Geometry (math.DG)Riemann surface[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential GeometryIsoperimetric inequality
researchProduct