Search results for "4-D"
showing 10 items of 955 documents
CCDC 1481996: Experimental Crystal Structure Determination
2016
Related Article: Fangfang Pan, Ngong Kodiah Beyeh, Robin H. A. Ras, Kari Rissanen|2016|CrystEngComm|18|5724|doi:10.1039/C6CE01229A
CCDC 990706: Experimental Crystal Structure Determination
2014
Related Article: N. Kodiah Beyeh, Altti Ala-Korpi, Mario Cetina, Arto Valkonen, Kari Rissanen|2014|Chem.-Eur.J.|20|15144|doi:10.1002/chem.201402533
CCDC 1488067: Experimental Crystal Structure Determination
2016
Related Article: Fangfang Pan, Ngong Kodiah Beyeh, Robin H. A. Ras, Kari Rissanen|2016|Cryst.Growth Des.|16|6729|doi:10.1021/acs.cgd.6b01454
CCDC 128517: Experimental Crystal Structure Determination
2001
Related Article: N.Terkia-Derdra, R.Andreu, M.Salle, E.Levillain, J.Orduna, J.Garin, E.Orti, R.Viruela, R.Pou-Amerigo, B.Sahraoui, A.Gorgues, J.-F.Favard, A.Riou|2000|Chem.-Eur.J.|6|1199|doi:10.1002/(SICI)1521-3765(20000403)6:7<1199::AID-CHEM1199>3.3.CO;2-7
2-Methyl-4-phenyl-3,4-dihydroquinazoline
2011
The title compound, C15H14N2, was formed during the lithiation of 2-methylquinazoline with phenyllithium followed by hydrolysis of the intermediate lithium 2-methyl-4-phenyl-4H-quinazolin-3-ide. NMR spectra as well as single-crystal X-ray structural data indicate that the reaction product to have the same structure in chloroform solution as in the crystalline state. The phenyl substituent is twisted out of the plane of the 3,4-dihydroquinazoline ring system by 86.47 (7)°. In the crystal, intermolecular N-HN interactions connect the molecules into infinite chains. peerReviewed
CCDC 1998478: Experimental Crystal Structure Determination
2021
Related Article: Lars J. Wesenberg, Erika Diehl, Till J. B. Zähringer, Carolin Dörr, Dieter Schollmeyer, Akihiro Shimizu, Jun‐ichi Yoshida, Ute A. Hellmich, Siegfried R. Waldvogel|2020|Chem.-Eur.J.|26|17574|doi:10.1002/chem.202003852
CCDC 2047542: Experimental Crystal Structure Determination
2021
Related Article: Zijie Qiu, Cheng-Wei Ju, Lucas Frédéric, Yunbin Hu, Dieter Schollmeyer, Grégory Pieters, Klaus Müllen, Akimitsu Narita|2021|J.Am.Chem.Soc.|143|4661|doi:10.1021/jacs.0c13197
Extra-virgin olive oils storage: Effect on constituents of biological significance
2021
Abstract The high oxidative stability of virgin olive oil with respect to other vegetable oils is mainly due to its fatty acid composition, in particular, to the high monounsaturated-to-polyunsaturated ratio, and to the presence of minor compounds that play a major role in preventing oxidation. In spite of its high stability, virgin olive oil is susceptible to oxidative processes, such as enzymatic oxidation, photooxidation, and autoxidation, which mainly occur during processing and storage. Generally, extra-virgin olive oil has a relatively long shelf life of 16–18 months of storage at room temperature. The study of shelf life is generally based on determining of quality parameters (acidit…
Nenukleozīdu HIV – 1 reversās transkriptāzes inhibitoru sintēze
2016
Nenukleozīdu HIV – 1 reversās transkriptāzes inhibitoru sintēze. Pustenko A., zinātniskie vadītāji Dr. chem. Žalubovskis R, Dr. chem. Igors Kļimenkovs. Maģistra darbs 71 lappuses, 58 attēli, 20 tabulas, 33 literatūras avoti. Latviešu valodā. Darbā tika sintezēti 3,4-dihidropirimidīn-2(1H)-oni un to mono- N-1 un N-1, N-3 bisatvasinājumi reakcijās ar virkni sulfonilhlorīdu un acilhlorīdu. Sintezēto savienojumu struktūra apstiprināta ar KMR spektriem, kā arī ar Rentgenstruktūranalīzi. Literatūras apskatā apkopota informācija par 3,4-dihidropirimidīn-2(1H)-onu sintēzes metodēm, to acilēšanu un sulfonilēšanu.
CCDC 680521: Experimental Crystal Structure Determination
2009
Related Article: A.Dobrov, V.B.Arion, S.Shova, A.Roller, E.Rentschler, B.K.Keppler|2008|Eur.J.Inorg.Chem.||4140|doi:10.1002/ejic.200800605