Search results for "4-DIACETYLPHLOROGLUCINOL"

showing 3 items of 3 documents

Effect of 2,4-Diacetylphloroglucinol on Pithium : cellular responses and variation in sensitivity among propagules and species

2003

International audience

POUVOIR PATHOGENE24-DIACETYLPHLOROGLUCINOLComputingMilieux_MISCELLANEOUS[SDV.BV.PEP] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacy
researchProduct

Defense Responses of Fusarium oxysporum to 2,4-Diacetylphloroglucinol, a Broad-Spectrum Antibiotic Produced by Pseudomonas fluorescens

2004

A collection of 76 plant-pathogenic and 41 saprophytic Fusarium oxysporum strains was screened for sensitivity to 2,4-diacetylphloroglucinol (2,4-DAPG), a broad-spectrum antibiotic produced by multiple strains of antagonistic Pseudomonas fluorescens. Approximately 17% of the F. oxysporum strains were relatively tolerant to high 2,4-DAPG concentrations. Tolerance to 2,4-DAPG did not correlate with the geographic origin of the strains, formae speciales, intergenic spacer (IGS) group, or fusaric acid production levels. Biochemical analysis showed that 18 of 20 tolerant F. oxysporum strains were capable of metabolizing 2,4-DAPG. For two tolerant strains, analysis by mass spectrometry indicated…

PhysiologyPhloroglucinolPseudomonas fluorescensPhloroglucinoltomatoPseudomonas fluorescensMicrobiologyresistancestrainschemistry.chemical_compoundFusariumtake-allDrug Resistance BacterialFusarium oxysporum[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologybiocontrolPhylogenyPlant DiseasesDose-Response Relationship DrugbiologyEPS-2food and beveragesgenetic diversityGeneral MedicineFungi imperfectiPlantspopulationssensitivitybiology.organism_classificationAnti-Bacterial AgentsLaboratorium voor PhytopathologiePRI BiosciencechemistryLaboratory of PhytopathologyPseudomonadales24-DiacetylphloroglucinolDNA Intergenicbiosynthesisabc transportersAgronomy and Crop ScienceFusaric acidPseudomonadaceaeMolecular Plant-Microbe Interactions®
researchProduct

Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt

2009

Natural disease-suppressive soils provide an untapped resource for the discovery of novel beneficial microorganisms and traits. For most suppressive soils, however, the consortia of microorganisms and mechanisms involved in pathogen control are unknown. To date, soil suppressiveness to Fusarium wilt disease has been ascribed to carbon and iron competition between pathogenic Fusarium oxysporum and resident non-pathogenic F. oxysporum and fluorescent pseudomonads. In this study, the role of bacterial antibiosis in Fusarium wilt suppressiveness was assessed by comparing the densities, diversity and activity of fluorescent Pseudomonas species producing 2,4-diacetylphloroglucinol (DAPG) (phlD+) …

chlororaphis pcl1391Antifungal AgentsDISEASE SUPRESSIVE SOILMicroorganismColony Count Microbialdose-response relationshipsFLUORESCENT PSEUDOMONADSblack root-rotPlant Rootsgraminis var triticiFusariumSolanum lycopersicumFlaxCluster AnalysisFUSARIUM WILTPathogenPhylogenySoil Microbiologymedia_commonEcologyEPS-2genotypic diversityfood and beveragesBiodiversitygenetic diversityFusarium wilt[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyPHENAZINE ANTIBIOTICSPolymorphism Restriction Fragment LengthDNA BacterialGenotypemedia_common.quotation_subject2PhloroglucinolBiologyMicrobiologyCompetition (biology)MicrobiologyPseudomonasAntibiosisBotanyFusarium oxysporumEcology Evolution Behavior and Systematicsbiological-controlAntibiosisbiology.organism_classificationLaboratorium voor PhytopathologieLaboratory of Phytopathology24-diacetylphloroglucinol-producing pseudomonasoxysporum fo47PhenazinesBeneficial organismAntagonism4-diacetylphloroglucinol-producing pseudomonasnonpathogenic fusarium
researchProduct