Search results for "4-dicarboxylate"
showing 10 items of 11 documents
Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase
2020
Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…
Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in u…
1996
In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are…
CCDC 150223: Experimental Crystal Structure Determination
2001
Related Article: Dieter Schollmeyer, Dieter Gröschl and Herbert Meier|2016|Z.Naturforsch.,B:Chem.Sci.|71|345|doi:10.1515/znb-2015-0201
CCDC 230045: Experimental Crystal Structure Determination
2005
Related Article: M.Brunner, P.Saarenketo, T.Straub, K.Rissanen, A.M.P.Koskinen|2004|Eur.J.Org.Chem.|2004|3879|doi:10.1002/ejoc.200400207
CCDC 907837: Experimental Crystal Structure Determination
2014
Related Article: Inguna Goba, Baiba Turovska, Sergey Belyakov, Edvards Liepinsh|2014|J.Mol.Struct.|1074|549|doi:10.1016/j.molstruc.2014.06.044
CCDC 1574211: Experimental Crystal Structure Determination
2020
Related Article: Błażej Dziuk, Krzysztof Ejsmont, Bartosz Zarychta|2020|J.Mol.Struct.|1209|127945|doi:10.1016/j.molstruc.2020.127945
CCDC 910389: Experimental Crystal Structure Determination
2013
Related Article: Y.Inokuma,S.Yoshioka,J.Ariyoshi,T.Arai,Y.Hitora,K.Takada,S.Matsunaga,K.Rissanen,M.Fujita|2013|Nature (London)|495|461|doi:10.1038/nature11990
CCDC 1415388: Experimental Crystal Structure Determination
2018
Related Article: Youwen Xu, Aylin Sibel Cankaya, Ruma Hoque, So Jeong Lee, Colleen Shea, Lena Kersting, Michael Schueller, Joanna S. Fowler, David Szalda, David Alexoff, Barbara Riehl, Tassilo Gleede, Richard A. Ferrieri, Wenchao Qu|2018|Chem.-Eur.J.|24|6848|doi:10.1002/chem.201801029
CCDC 1904525: Experimental Crystal Structure Determination
2019
Related Article: Y. Gautier, T. Maris, W.G. Skene|2019|Acta Crystallogr.,Sect.E:Cryst.Commun.|75|589|doi:10.1107/S2056989019003864
CCDC 1532008: Experimental Crystal Structure Determination
2017
Related Article: P. J. Llabres-Campaner, J. Pitarch-Jarque, R. Ballesteros-Garrido, B. Abarca, R. Ballesteros, E. García-España|2017|Dalton Trans.|46|7397|doi:10.1039/C7DT00855D