Search results for "42.50.Ct"

showing 3 items of 3 documents

Casimir-Lifshitz force out of thermal equilibrium between dielectric gratings

2014

We calculate the Casimir-Lifshitz pressure in a system consisting of two different 1D dielectric lamellar gratings having two different temperatures and immersed in an environment having a third temperature. The calculation of the pressure is based on the knowledge of the scattering operators, deduced using the Fourier Modal Method. The behavior of the pressure is characterized in detail as a function of the three temperatures of the system as well as the geometrical parameters of the two gratings. We show that the interplay between non-equilibrium effects and geometrical periodicity offers a rich scenario for the manipulation of the force. In particular, we find regimes where the force can…

ACS number(s): 12.20.−m42.79.Dj42.50.Ct42.50.Lc[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Degrees of freedom (physics and chemistry)Non-equilibrium thermodynamicsFOS: Physical sciencesDielectricCasimir Force Out of Thermal equilibrium systems GratingsSettore FIS/03 - Fisica Della Materiasymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Lamellar structure[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]PhysicsThermal equilibriumQuantum PhysicsCondensed matter physicsScatteringAtomic and Molecular Physics and OpticsCasimir effectFourier transformClassical mechanicssymbolsQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Modulational instability in resonant optical fiber with higher-order dispersion effect

2010

International audience; The modulational instability (MI) of an electromagnetic wave in a resonant optical fiber with a two-level system is investigated. In the normal dispersion regime, we find the occurrence of nonconventional MI sidebands which are induced by the two-level resonant atoms. We also observe that the MI gain spectra are suppressed by the higher-order dispersion effect in the anomalous dispersion regime.

Physics42.81.Dp Propagation scattering and losses; solitons 42.50.Ct Quantum description of interaction of light and matter; related experiments 42.81.Gs Birefringence polarizationOptical fiberWave propagationbusiness.industryNonlinear optics01 natural sciencesElectromagnetic radiationAtomic and Molecular Physics and OpticsSpectral lineElectronic Optical and Magnetic Materialslaw.invention[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry010309 optics[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryModulational instabilityOpticslawOptical materials0103 physical sciencesDispersion (optics)[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry010306 general physicsbusiness
researchProduct

Newton algorithm for Hamiltonian characterization in quantum control

2014

We propose a Newton algorithm to characterize the Hamiltonian of a quantum system interacting with a given laser field. The algorithm is based on the assumption that the evolution operator of the system is perfectly known at a fixed time. The computational scheme uses the Crank-Nicholson approximation to explicitly determine the derivatives of the propagator with respect to the Hamiltonians of the system. In order to globalize this algorithm, we use a continuation method that improves its convergence properties. This technique is applied to a two-level quantum system and to a molecular one with a double-well potential. The numerical tests show that accurate estimates of the unknown paramete…

Statistics and Probability[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC][ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Non uniquenessFOS: Physical sciencesGeneral Physics and AstronomyQuantum controlsymbols.namesake[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Fixed time[ CHIM.OTHE ] Chemical Sciences/OtherQuantum systemNumerical testsMathematical PhysicsMathematicsQuantum PhysicsPropagatorStatistical and Nonlinear PhysicsNMRContinuation methodModeling and Simulationsymbolsinverse problemidentification02.30.Yy Control theory02.30.Tb Operator theory42.50.Ct Quantum description of interaction of light and matter; related experiments02.60.Cb Numerical simulation; solution of equations03.65.Ge Solutions of wave equations: bound states02.30.Mv Approximations and expansions[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Quantum Physics (quant-ph)Hamiltonian (quantum mechanics)[CHIM.OTHE]Chemical Sciences/OtherAlgorithmcontrol
researchProduct