Search results for "42.50.Md"

showing 4 items of 4 documents

Field-free molecular alignment for probing collisional relaxation dynamics

2013

International audience; We report the experimental study of field-free molecular alignment in CO2 gas mixtures induced by intense femtosecond laser pulses in the presence of collisional processes. We demonstrate that the alignment signals exhibit specific features due to nontrivial collisional propensity rules that tend to preserve the orientation of the rotational angular momentum of the molecules. The analysis is performed with a quantum approach based on the modeling of rotational J- and M-dependent state-to-state transfer rates. The present work paves the way for strong-field spectroscopy of collisional dynamics.

PhysicsAngular momentumWork (thermodynamics)Field (physics)Mechanical effects of light on atoms molecules and ions42.50.MdRelaxation (NMR)Optical transient phenomena: quantum beats photon echo free-induction decay dephasings and revivals optical nutation and self-induced transparencyLaserMolecular physicsAtomic and Molecular Physics and Opticslaw.inventionRotational and vibrational energy transferlaw[SDU]Sciences of the Universe [physics]34.50.EzFemtosecond37.10.VzSpectroscopyQuantum
researchProduct

Probing ultrafast thermalization with field-free molecular alignment

2012

International audience; The rotation-translation thermalization of CO2 gas is investigated 500 ps after its preheating by a nonresonant short and intense laser pulse. The temperature of thermalization is optically determined with two additional short laser pulses enabling a field-free molecular alignment process and its probing, respectively. The measurements are performed for various intensities of the preheat pulse, leading to the observation of different temperatures which are in very good agreement with classical molecular dynamics simulations. The results can be regarded as a step towards real-time tracking of ultrafast relaxation pathways in molecular motion.

Physicscollisional dynamics010304 chemical physicsField (physics)ultrafast nonlinear optics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph][ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]femtosecond phenomenaRelaxation (NMR)ultrafast relaxationTracking (particle physics)Laser01 natural sciences37.10.Vz 34.50.Ez 42.50.MdAtomic and Molecular Physics and Opticslaw.inventionPulse (physics)Molecular dynamicsThermalisationlaw0103 physical sciencesAtomic physics010306 general physicsUltrashort pulsemolecular alignment
researchProduct

High rate concentration measurement of molecular gas mixtures using a spatial detection technique

2010

International audience; Concentration measurement in molecular gas mixtures using a snapshot spatial imaging technique is reported. The approach consists of measuring the birefringence of the molecular sample when field-free alignment takes place, each molecular component producing a signal with an amplitude depending on the molecular density. The concentration measurement is obtained on a single-shot basis by probing the time-varying birefringence through femtosecond time-resolved optical polarigraphy (FTOP). The relevance of the method is assessed in air.

High rateBirefringenceMolecular alignment[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]ChemistryTime resolved spectra[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Analytical chemistryPhysics::OpticsGeneral Physics and Astronomy37.10 Vz 42.50 Hz 42.50 Md01 natural sciences010305 fluids & plasmasFemtosecond laserSingle-shotAmplitudeOptical polarigraphy0103 physical sciencesFemtosecondMolecular DensityImaging techniquePhysical and Theoretical Chemistry[PHYS.PHYS.PHYS-ATOM-PH] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Concentration measurement010306 general physics
researchProduct

Narrow and contrast resonance of increased absorption in Λ-system observed in Rb cell with buffer gas

2009

International audience; We report observation of a narrow (sub-natural) and high-contrast resonance of increased absorption (“bright” resonance) in Rb cell with Ne buffer gas under previously unexplored experimental conditions for coupling and probe radiation configuration. The coupling laser-stabilized frequency is detuned by ~3 GHz from 5S1/2, Fg=3 → 5P3/2, Fe=2,3,4 transitions, while the probe laser frequency is scanned across these transitions. We believe the bright resonance formation, occurring when the probe laser frequency is blue-shifted from the coupling frequency by a value of the ground state hyperfine splitting, is caused predominantly by a 2-photon absorption of the probe radi…

Rb atomic vapor[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph][ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]EIT resonanceatomic transitionEIA resonance[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph]42.50.Gy 32.70.Jz 42.62.Fi 42.50.Md
researchProduct