Search results for "42B30"

showing 4 items of 4 documents

Radial Maximal Function Characterizations of Hardy Spaces on RD-Spaces and Their Applications

2009

Let ${\mathcal X}$ be an RD-space with $\mu({\mathcal X})=\infty$, which means that ${\mathcal X}$ is a space of homogeneous type in the sense of Coifman and Weiss and its measure has the reverse doubling property. In this paper, we characterize the atomic Hardy spaces $H^p_{\rm at}(\{\mathcal X})$ of Coifman and Weiss for $p\in(n/(n+1),1]$ via the radial maximal function, where $n$ is the "dimension" of ${\mathcal X}$, and the range of index $p$ is the best possible. This completely answers the question proposed by Ronald R. Coifman and Guido Weiss in 1977 in this setting, and improves on a deep result of Uchiyama in 1980 on an Ahlfors 1-regular space and a recent result of Loukas Grafakos…

Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsMathematics::Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics42B30 (Primary) 42B25 (Secondary) 42B35Functional Analysis (math.FA)
researchProduct

VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS

2008

Let $(\Omega, \Sigma, \mu)$ be a $\sigma-$finite measure space, $1\le p \lt \infty$, $X$ be a Banach space $X$ and ${\cal B} :X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p-$integrable with respect to ${\cal B}$ whenever $\sup\{\int_\Omega\|{\cal B}(f(w),y)\|^pd\mu: \|y\|=1\}$ is finite. We identify the spaces of functions integrable with respect to the bilinear maps arising from H\"older's and Young's inequalities. We apply the theory to give conditions on $X$-valued kernels for the boundedness of integral operators $T_{{\cal B}}(f) (w)=\int_{\Omega'}{{\cal B}}(k(w,w'),$ $f(w'))d\mu'(w')$ from ${\mathrm L}^p(Y)$ into ${\mathrm L}^p(Z)$, extending t…

Discrete mathematicsIntegrable systemGeneral MathematicsBanach spaceFunction (mathematics)Space (mathematics)Measure (mathematics)Omegavector-valued functionsbilinear mapBounded function42B3047B35Vector-valued functionMathematics
researchProduct

New Orlicz-Hardy Spaces Associated with Divergence Form Elliptic Operators

2009

Let $L$ be the divergence form elliptic operator with complex bounded measurable coefficients, $\omega$ the positive concave function on $(0,\infty)$ of strictly critical lower type $p_\oz\in (0, 1]$ and $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$ for $t\in (0,\infty).$ In this paper, the authors study the Orlicz-Hardy space $H_{\omega,L}({\mathbb R}^n)$ and its dual space $\mathrm{BMO}_{\rho,L^\ast}({\mathbb R}^n)$, where $L^\ast$ denotes the adjoint operator of $L$ in $L^2({\mathbb R}^n)$. Several characterizations of $H_{\omega,L}({\mathbb R}^n)$, including the molecular characterization, the Lusin-area function characterization and the maximal function characterization, are established. The …

Mathematics - Functional AnalysisMathematics::Functional AnalysisMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Classical Analysis and ODEs42B35 (Primary) 42B30 46E30 (Secondary)Functional Analysis (math.FA)
researchProduct

Pointwise characterizations of Hardy-Sobolev functions

2006

We establish simple pointwise characterizations of functions in the Hardy-Sobolev spaces within the range n/(n+1)<p <=1. In addition, classical Hardy inequalities are extended to the case p <= 1.

PointwiseMathematics::Functional Analysis42B30 (Primary) 26D15General Mathematics42B25 (Secondary)010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEs01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spaceCombinatoricsNull setType conditionMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Locally integrable function0101 mathematics46E35; 42B30 (Primary) 26D15; 42B25 (Secondary)Mathematics
researchProduct