Search results for "44A12"
showing 4 items of 14 documents
Pestov identities and X-ray tomography on manifolds of low regularity
2021
We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.
Torus computed tomography
2020
We present a new computed tomography (CT) method for inverting the Radon transform in 2D. The idea relies on the geometry of the flat torus, hence we call the new method Torus CT. We prove new inversion formulas for integrable functions, solve a minimization problem associated to Tikhonov regularization in Sobolev spaces and prove that the solution operator provides an admissible regularization strategy with a quantitative stability estimate. This regularization is a simple post-processing low-pass filter for the Fourier series of a phantom. We also study the adjoint and the normal operator of the X-ray transform on the flat torus. The X-ray transform is unitary on the flat torus. We have i…
Unique continuation property and Poincar�� inequality for higher order fractional Laplacians with applications in inverse problems
2020
We prove a unique continuation property for the fractional Laplacian $(-\Delta)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-…
Fourier analysis of periodic Radon transforms
2019
We study reconstruction of an unknown function from its $d$-plane Radon transform on the flat $n$-torus when $1 \leq d \leq n-1$. We prove new reconstruction formulas and stability results with respect to weighted Bessel potential norms. We solve the associated Tikhonov minimization problem on $H^s$ Sobolev spaces using the properties of the adjoint and normal operators. One of the inversion formulas implies that a compactly supported distribution on the plane with zero average is a weighted sum of its X-ray data.