Search results for "46.05.+b"

showing 5 items of 5 documents

Universal differentiability sets and maximal directional derivatives in Carnot groups

2019

We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.

Pure mathematicsCarnot groupGeneral MathematicsDirectional derivative01 natural sciencesdifferentiaaligeometriasymbols.namesake0103 physical sciencesFOS: MathematicsCarnot group; Directional derivative; Lipschitz map; Pansu differentiable; Universal differentiability set; Mathematics (all); Applied MathematicsMathematics (all)Point (geometry)Differentiable function0101 mathematicsUniversal differentiability setEngel groupMathematics43A80 46G05 46T20 49J52 49Q15 53C17Directional derivativeuniversal differentiability setApplied Mathematicsta111010102 general mathematicsCarnot group16. Peace & justiceLipschitz continuityPansu differentiableFunctional Analysis (math.FA)Mathematics - Functional AnalysisHausdorff dimensionsymbols010307 mathematical physicsLipschitz mapfunktionaalianalyysiCarnot cycledirectional derivative
researchProduct

Sesquilinear forms associated to sequences on Hilbert spaces

2019

The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of sesquilinear forms, such as Kato's theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.

Semi-framePure mathematicsGeneral MathematicsContext (language use)42C15 47A07 47A05 46C0501 natural sciencesBessel sequencesymbols.namesakeSettore MAT/05 - Analisi MatematicaRepresentation theoremFOS: MathematicsFrame (artificial intelligence)Frame0101 mathematics0105 earth and related environmental sciencesMathematicsResolvent set010505 oceanography010102 general mathematicsAssociated operatorRepresentation (systemics)Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbolsSesquilinear forms
researchProduct

Generalized heat equation and transitions between different heat-transport regimes in narrow stripes

2019

Abstract In the framework of weakly nonlocal thermodynamic theory, in this paper we derive a nonlocal and nonlinear heat-transport equation beyond the Fourier law by means of thermodynamic considerations in agreement with the second law. The obtained equation describes the transitions among different heat-transport regimes. The stability of the solution of that equation is also analyzed in a special case.

diffusive regimegeneralized heat equation05.70.Ln46.05.+b02 engineering and technologyballistic regime01 natural sciencesStability (probability)010305 fluids & plasmasphonon-hydrodynamic regime0203 mechanical engineering0103 physical sciencesGeneral Materials ScienceSpecial caseCivil and Structural EngineeringPhysicsMechanical EngineeringBallistic regimeCondensed Matter PhysicsNonlinear system020303 mechanical engineering & transportsClassical mechanics66.70.-fMechanics of MaterialsFourier lawHeat equationgeneralized heat equation; diffusive regime; phonon-hydrodynamic regime; ballistic regimeMechanics Research Communications
researchProduct

Structure of locally convex quasi C * -algebras

2008

There are examples of C*-algebras A that accept a locally convex *-topology τ coarser than the given one, such that Ã[τ] (the completion of A with respect to τ) is a GB*-algebra. The multiplication of A[τ] may be or not be jointly continuous. In the second case, Ã[*] may fail being a locally convex *-algebra, but it is a partial *-algebra. In both cases the structure and the representation theory of Ã[τ] are investigated. If Ã+ τ denotes the τ-closure of the positive cone A+ of the given C*-algebra A, then the property Ā+ τ ∩ (-Ā+ τ) = {0} is decisive for the existence of certain faithful *-representations of the corresponding *-algebra Ã[τ]

46L05quasi *-algebrasGeneral Mathematicslocally convex quasi $C^*$-algebrasRegular polygonStructure (category theory)FOS: Physical sciencesContext (language use)Mathematical Physics (math-ph)quasi-positivityCombinatoricsunbounded *-representationsMultiplicationquasi ∗-algebras quasi-positivity locally convex quasi C ∗ -algebras unbounded ∗-representations.46K10Algebra over a field46K70Settore MAT/07 - Fisica MatematicaMathematical PhysicsTopology (chemistry)47L60MathematicsJournal of the Mathematical Society of Japan
researchProduct

Fully representable and*-semisimple topological partial*-algebras

2012

We continue our study of topological partial *-algebras, focusing our attention to *-semisimple partial *-algebras, that is, those that possess a {multiplication core} and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the scope of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome …

Discrete mathematics*-semisimple partial *-algebrasPure mathematicsbounded elements.*-semisimple partial *-algebraGeneral MathematicsMathematics - Rings and AlgebrasTopology08A55 46K05 46K10 47L60bounded elements}topological partial *-algebrasRings and Algebras (math.RA)Settore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsInvariant (mathematics)topological partial *-algebraMathematicsStudia Mathematica
researchProduct