Search results for "47A63"
showing 4 items of 4 documents
Hilbert space operators with two-isometric dilations
2021
A bounded linear Hilbert space operator $S$ is said to be a $2$-isometry if the operator $S$ and its adjoint $S^*$ satisfy the relation $S^{*2}S^{2} - 2 S^{*}S + I = 0$. In this paper, we study Hilbert space operators having liftings or dilations to $2$-isometries. The adjoint of an operator which admits such liftings is characterized as the restriction of a backward shift on a Hilbert space of vector-valued analytic functions. These results are applied to concave operators (i.e., operators $S$ such that $S^{*2}S^{2} - 2 S^{*}S + I \le 0$) and to operators similar to contractions or isometries. Two types of liftings to $2$-isometries, as well as the extensions induced by them, are construct…
THE CAUCHY DUAL AND 2-ISOMETRIC LIFTINGS OF CONCAVE OPERATORS
2018
We present some 2-isometric lifting and extension results for Hilbert space concave operators. For a special class of concave operators we study their Cauchy dual operators and discuss conditions under which these operators are subnormal. In particular, the quasinormality of compressions of such operators is studied.
Frames and weak frames for unbounded operators
2020
In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.
Continuous frames for unbounded operators
2021
Few years ago G\u{a}vru\c{t}a gave the notions of $K$-frame and atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$ in order to decompose $\mathcal{R}(K)$, the range of $K$, with a frame-like expansion. These notions are here generalized to the case of a densely defined and possibly unbounded operator on a Hilbert space $A$ in a continuous setting, thus extending what have been done in a previous paper in a discrete framework.