Search results for "47B35"

showing 6 items of 6 documents

Weyl symbols and boundedness of Toeplitz operators

2019

International audience; We study Toeplitz operators on the Bargmann space, with Toeplitz symbols that are exponentials of inhomogeneous quadratic polynomials. It is shown that the boundedness of such operators is implied by the boundedness of the corresponding Weyl symbols.

Mathematics::Functional AnalysisMathematics - Complex VariablesMathematics::Operator AlgebrasGeneral Mathematics010102 general mathematicsMathematics::Classical Analysis and ODEs32U05 32W25 35S30 47B3501 natural sciencesToeplitz matrixFunctional Analysis (math.FA)AlgebraMathematics - Functional AnalysisFOS: MathematicsComputer Science::Symbolic Computation0101 mathematicsComplex Variables (math.CV)[MATH]Mathematics [math]Mathematics
researchProduct

On a generalisation of Krein's example

2017

We generalise a classical example given by Krein in 1953. We compute the difference of the resolvents and the difference of the spectral projections explicitly. We further give a full description of the unitary invariants, i.e., of the spectrum and the multiplicity. Moreover, we observe a link between the difference of the spectral projections and Hankel operators.

Pure mathematicsClassical exampleApplied Mathematics010102 general mathematicsFOS: Physical sciencesMultiplicity (mathematics)Mathematical Physics (math-ph)01 natural sciencesUnitary stateFunctional Analysis (math.FA)Primary 47B15 Secondary 47A55 35J25 47A10 47B35Mathematics - Functional AnalysisMathematics - Spectral Theory0103 physical sciencesFOS: MathematicsComputer Science::Symbolic Computation010307 mathematical physics0101 mathematicsSpectral Theory (math.SP)Mathematical PhysicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS

2008

Let $(\Omega, \Sigma, \mu)$ be a $\sigma-$finite measure space, $1\le p \lt \infty$, $X$ be a Banach space $X$ and ${\cal B} :X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p-$integrable with respect to ${\cal B}$ whenever $\sup\{\int_\Omega\|{\cal B}(f(w),y)\|^pd\mu: \|y\|=1\}$ is finite. We identify the spaces of functions integrable with respect to the bilinear maps arising from H\"older's and Young's inequalities. We apply the theory to give conditions on $X$-valued kernels for the boundedness of integral operators $T_{{\cal B}}(f) (w)=\int_{\Omega'}{{\cal B}}(k(w,w'),$ $f(w'))d\mu'(w')$ from ${\mathrm L}^p(Y)$ into ${\mathrm L}^p(Z)$, extending t…

Discrete mathematicsIntegrable systemGeneral MathematicsBanach spaceFunction (mathematics)Space (mathematics)Measure (mathematics)Omegavector-valued functionsbilinear mapBounded function42B3047B35Vector-valued functionMathematics
researchProduct

Analytic Bergman operators in the semiclassical limit

2018

Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.

Pure mathematicsadjoint operatorsMicrolocal analysis32A2501 natural sciences[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Limit (mathematics)Bergman projectionComplex Variables (math.CV)[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsBergman kernelMathematicsasymptotic expansionweighted L2-estimates58J40[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]Mathematical Physics (math-ph)16. Peace & justiceFunctional Analysis (math.FA)Mathematics - Functional Analysisasymptoticstheoremkernelanalytic pseudodifferential operator010307 mathematical physicsAsymptotic expansion47B35classical limitAnalysis of PDEs (math.AP)Toeplitz operatorGeneral Mathematics70H15Holomorphic functionFOS: Physical sciencesSemiclassical physicsKähler manifold[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]analytic symbolsMathematics - Analysis of PDEskahler-metrics0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematics32W25space35A27Kähler manifoldmicrolocal analysisToeplitz operatorquantizationsemiclassical analysis
researchProduct

Characterizing boundedness of metaplectic Toeplitz operators

2023

We study Toeplitz operators on the Bargmann space, with Toeplitz symbols given by exponentials of complex quadratic forms. We show that the boundedness of the corresponding Weyl symbols is necessary for the boundedness of the operators, thereby completing the proof of the Berger-Coburn conjecture in this case. We also show that the compactness of such Toeplitz operators is equivalent to the vanishing of their Weyl symbols at infinity.

Mathematics - Functional Analysis32A36 32U05 32W25 35S30 47B35Mathematics - Complex VariablesFOS: MathematicsComplex Variables (math.CV)Functional Analysis (math.FA)
researchProduct

Positivity, complex FIOs, and Toeplitz operators

2018

International audience; We establish a characterization of complex linear canonical transformations that are positive with respect to a pair of strictly plurisubharmonic quadratic weights. As an application, we show that the boundedness of a class of Toeplitz operators on the Bargmann space is implied by the boundedness of their Weyl symbols.

Class (set theory)Pure mathematicsFourier integral operator in the complex domainPrimary: 32U05 32W25 35S30 47B35 70H1570H15Mathematics::Classical Analysis and ODEsOcean EngineeringCharacterization (mathematics)32U05 32W25 35S30 47B35 70H15Space (mathematics)01 natural sciencesMathematics - Analysis of PDEsQuadratic equation0103 physical sciencesFOS: Mathematics0101 mathematics[MATH]Mathematics [math]MathematicsMathematics::Functional Analysispositive canonical transformationMathematics::Complex Variables32U0532W25010102 general mathematicsToeplitz matrixFunctional Analysis (math.FA)Mathematics - Functional Analysis35S30Toeplitz operatorpositive Lagrangian plane010307 mathematical physicsstrictly plurisubharmonic quadratic form47B35Analysis of PDEs (math.AP)Toeplitz operator
researchProduct