Search results for "4S"
showing 10 items of 89 documents
Involvement of Kv3.1 potassium chanels in 7-ketocholesterol, 24S-hydroxycholesterol and C24 : 0-induced lipotoxicity on 158N and BV-2 cells : relatio…
2017
Potassium (K+) is involved in the regulation of cellular excitability, cell cycle regulation, cell viability, neuroprotection and maintenance of microglial and oligodendrocytic functions. Potassium dysfunction, described in several neurodegenerative diseases such as Alzheimer's Disease (AD), multiple sclerosis (MS), Parkinson's disease and Huntington's disease, may be a potential therapeutic target. The underlying toxic mechanisms of these neurodegenerative pathologies involve oxysterols, which are oxidized cholesterol derivatives, and fatty acids including those associated with peroxisomal metabolism. 7-ketocholesterol (7KC), 24S-hydroxycholesterol (24S-OHC) and tetracosanoic acid (C24:0),…
"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.
"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"
2017
Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.