Search results for "5-Hydroxytryptamine"

showing 3 items of 3 documents

Dietary l-tryptophan leaves a lasting impression on the brain and the stress response

2017

AbstractComparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic sa…

Monoamines0301 basic medicinemedicine.medical_specialtyHydrocortisoneSalmo salarMedicine (miscellaneous)5-HIAA 5-hydroxyindoleacetic acid03 medical and health sciences0302 clinical medicineStress Physiologicalbiology.animalInternal medicinemedicineAnimalsNeurochemistryHPI hypothalamic–pituitary–interrenalBrain ChemistryNutrition and DieteticsSSRI supplementation and serotonin reuptake inhibitorsbiology5-Hydroxyindoleacetic acidCerebrumTrp tryptophanTryptophanTryptophanBrainVertebratel-TryptophanAnimal Feed030104 developmental biologyMonoamine neurotransmitterEndocrinologymedicine.anatomical_structure5-HT 5-hydroxytryptamine (serotonin)HypothalamusDietary SupplementsLong-term effectsSerotonin030217 neurology & neurosurgerymedicine.drug
researchProduct

Serotonergic modulation of rat pineal gland activity: in vivo evidence for a 5-Hydroxytryptamine(2C) receptor involvement

2000

There are some suggestions that, in the pineal gland, serotonin acts not only as a precursor of melatonin but also plays a role in the modulation of the pineal biosynthetic activity. To corroborate this possible neuromodulatory role of 5-hydroxytryptamine (serotonin) (5-HT) on the pineal gland, the effects of two 5-HT(2) receptor agonists meta-chlorophenylpiperazine (m-CPP) and 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane were assessed in vivo on pineal N-acetyltransferase (NAT) activity and melatonin content in rats. m-CPP potentiated the enhancement of NAT activity and pineal melatonin content induced by isoproterenol administration during daytime, whereas it did not affect the diurnal …

MaleArylamine N-Acetyltransferasepineal glandAmphetaminesIsoproterenolPiperazinesserotoninergic modulation5-hydroxytryptamineRatsReceptors SerotoninReceptor Serotonin 5-HT2CSettore BIO/14 - FarmacologiaAnimalsRats WistarMelatonin
researchProduct

From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring a…

2007

After Golgi-Cajal mapped neural circuits, the discovery and mapping of the central monoamine neurons opened up for a new understanding of interneuronal communication by indicating that another form of communication exists. For instance, it was found that dopamine may be released as a prolactin inhibitory factor from the median eminence, indicating an alternative mode of dopamine communication in the brain. Subsequently, the analysis of the locus coeruleus noradrenaline neurons demonstrated a novel type of lower brainstem neuron that monosynaptically and globally innervated the entire CNS. Furthermore, the ascending raphe serotonin neuron systems were found to globally innervate the forebrai…

DopamineTortuosityBrain functionWiring transmissionSynaptic TransmissionDiffusionDual probe microdialysisMicrofluorimetrychemistry.chemical_compoundCatecholaminesPressure gradientsVolume transmissionHistofluorescenceLocus coeruleusExtracellular spaceNeurological and mental disordersNeurotransmitterNeuronsNeurotransmitter AgentsGeneral NeuroscienceBrain5-HydroxytryptamineAmygdalamedicine.anatomical_structure5-Hydroxytryptamine; Amygdala; Brain function; Brain uncoupling protein-2; Catecholamines; CA turnover; Clearance; Diffusion; Dopamine; Dorsal raphe; Dual probe microdialysis; Extracellular space; Extrasynaptic receptors; Histofluorescence; Local circuits; Locus coeruleus; Mapping of monoamine neurons; Microdensitometry; Microfluorimetry; Neurological and mental disorders; Noradrenaline; Nucleus accumbens; Pressure gradients; Receptor mosaics; Receptor–receptor interactions; Substantia nigra; Thermal gradients; Tortuosity; Transmitter–receptor mismatches; Volume fraction; Volume transmission; Wiring transmissionClearanceNucleus accumbensCA turnoverLocal circuitsReceptor–receptor interactionsSilver StainingMapping of monoamine neuronsModels NeurologicalNeurotransmissionBiologySerotonergicSubstantia nigramedicineBiological neural networkAnimalsHumansThermal gradientsTransmitter–receptor mismatchesVolume fractionExtrasynaptic receptorsMonoamine neurotransmitterchemistryReceptor mosaicsForebrainNoradrenalineLocus coeruleusBrain uncoupling protein-2Neurology (clinical)NeuronNerve NetMicrodensitometry5-Hydroxytryptamine Amygdala Brain function Brain uncoupling protein-2 Catecholamines CA turnover Clearance DiffusionNeuroscienceDorsal raphe
researchProduct