Search results for "53A04"
showing 2 items of 2 documents
Curves with constant curvature ratios
2004
Curves in ${\mathbb R}^n$ for which the ratios between two consecutive curvatures are constant are characterized by the fact that their tangent indicatrix is a geodesic in a flat torus. For $n= 3,4$, spherical curves of this kind are also studied and compared with intrinsic helices in the sphere.
Bicycle paths, elasticae and sub-Riemannian geometry
2020
We relate the sub-Riemannian geometry on the group of rigid motions of the plane to `bicycling mathematics'. We show that this geometry's geodesics correspond to bike paths whose front tracks are either non-inflectional Euler elasticae or straight lines, and that its infinite minimizing geodesics (or `metric lines') correspond to bike paths whose front tracks are either straight lines or `Euler's solitons' (also known as Syntractrix or Convicts' curves).