Search results for "53A05"
showing 3 items of 3 documents
La théorie des lignes parallèles de Johann Heinrich Lambert
2014
International audience; The memoir "Theory of parallel lines" (1766) by Johannes Heinrich Lambert is one of the founding texts of hyperbolic geometry, even though his author conceived it as an attempt to show that this geometry does not exist. In fact, Lambert developed that theory with the hope of finding a contradiction. In doing so, he obtained several fundamental results of hyperbolic geometry. This was sixty years before the first writings of Lobachevsky and Bolyai appeared in print. This book contains the first complete translation of Lambert's memoir as well as mathematical and historical commentaries.
The horospherical Gauss-Bonnet type theorem in hyperbolic space
2006
We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space and show that totally umbilic hypersurfaces with vanishing cur- vatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space. + (i1) by using the model in Minkowski space. We introduced the notion of hyperbolic Gauss indicatrices slightly modified the definition of hyperbolic Gauss maps. The notion of hyperbolic indicatrices is independent of the choice of the model of hyperbolic space. Using the hyperbolic Gauss indicatrix, we defined the principal hyperbolic curv…
Isolated roundings and flattenings of submanifolds in Euclidean spaces
2005
We introduce the concepts of rounding and flattening of a smooth map $g$ of an $m$-dimensional manifold $M$ to the euclidean space $\R^n$ with $m<n$, as those points in $M$ such that the image $g(M)$ has contact of type $\Sigma^{m,\dots,m}$ with a hypersphere or a hyperplane of $\R^n$, respectively. This includes several known special points such as vertices or flattenings of a curve in $\R^n$, umbilics of a surface in $\R^3$, or inflections of a surface in $\R^4$.