Search results for "53C24"

showing 5 items of 5 documents

Homogeneous Weyl connections of non-positive curvature

2015

We study homogenous Weyl connections with non-positive sectional curvatures. The Cartesian product $\mathbb S^1 \times M$ carries canonical families of Weyl connections with such a property, for any Riemmanian manifold $M$. We prove that if a homogenous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (streched non-positive), then it must be locally of the product type.

Mathematics - Differential GeometryPure mathematics01 natural sciencesGaussian thermostatssymbols.namesake0103 physical sciencesFOS: MathematicsNon-positive curvatureNon-positive curvature0101 mathematicsConnection (algebraic framework)53C24 53C21Mathematics010102 general mathematicsMathematical analysisLie groupWeyl connectionsCartesian productManifoldUnimodular matrixDifferential Geometry (math.DG)Differential geometrysymbolsWeyl transformationMathematics::Differential Geometry010307 mathematical physicsGeometry and TopologyAnalysisAnnals of Global Analysis and Geometry
researchProduct

Spherically symmetric terrestrial planets with discontinuities are spectrally rigid

2023

We establish spectral rigidity for spherically symmetric manifolds with boundary and interior interfaces determined by discontinuities in the metric under certain conditions. Rather than a single metric, we allow two distinct metrics in between the interfaces enabling the consideration of two wave types, like P- and S-polarized waves in isotropic elastic solids. Terrestrial planets in our solar system are approximately spherically symmetric and support toroidal and spheroidal modes. Discontinuities typically correspond with phase transitions in their interiors. Our rigidity result applies to such planets as we ensure that our conditions are satisfied in generally accepted models in the pres…

Mathematics - Differential GeometryMathematics - Analysis of PDEsDifferential Geometry (math.DG)FOS: Mathematics53C24 58J50 86A22Analysis of PDEs (math.AP)
researchProduct

A rigidity problem on the round sphere

2015

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

Mathematics - Differential GeometryPure mathematicsEuclidean spaceApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsComputer Science::Numerical Analysis01 natural sciencesOverdetermined systemrotationally symmetric spaceMathematics - Analysis of PDEsRigidity (electromagnetism)rigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesRound sphereFOS: MathematicsPrimary 35R01 35N25 Secondary: 53C24 58J05Overdetermined PDE010307 mathematical physics0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct

Boundary rigidity for Randers metrics

2021

If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.

Mathematics - Differential GeometryInverse problemsboundary rigidityMathematical analysisBoundary (topology)Rigidity (psychology)ArticlesInverse problemtravel time tomography53C24 53A35 86A22Seismic waveDifferential Geometry (math.DG)Norm (mathematics)Metric (mathematics)FOS: MathematicsMathematics::Metric GeometryMathematics::Differential GeometryMathematics::Symplectic GeometryMathematicsAnnales Fennici Mathematici
researchProduct

The method of moving planes: a quantitative approach

2018

We review classical results where the method of the moving planes has been used to prove symmetry properties for overdetermined PDE's boundary value problems (such as Serrin's overdetermined problem) and for rigidity problems in geometric analysis (like Alexandrov soap bubble Theorem), and we give an overview of some recent results related to quantitative studies of the method of moving planes, where quantitative approximate symmetry results are obtained.

Mathematics - Differential Geometryoverdetermined problem010102 general mathematicsmean curvaturelcsh:QA299.6-43335N25; 35B35; 53A10; 53C24; 35B50; 35B51; 35J70alexandrov soap bubble theoremlcsh:Analysisstability01 natural sciencesAlexandrov Soap Bubble Theorem; overdetermined problems; rigidity; stability; mean curvature; moving planesMathematics - Analysis of PDEsrigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematicaoverdetermined problemsFOS: Mathematics0101 mathematicsmoving planesAnalysis of PDEs (math.AP)
researchProduct