Search results for "53C24"
showing 5 items of 5 documents
Homogeneous Weyl connections of non-positive curvature
2015
We study homogenous Weyl connections with non-positive sectional curvatures. The Cartesian product $\mathbb S^1 \times M$ carries canonical families of Weyl connections with such a property, for any Riemmanian manifold $M$. We prove that if a homogenous Weyl connection on a manifold, modeled on a unimodular Lie group, is non-positive in a stronger sense (streched non-positive), then it must be locally of the product type.
Spherically symmetric terrestrial planets with discontinuities are spectrally rigid
2023
We establish spectral rigidity for spherically symmetric manifolds with boundary and interior interfaces determined by discontinuities in the metric under certain conditions. Rather than a single metric, we allow two distinct metrics in between the interfaces enabling the consideration of two wave types, like P- and S-polarized waves in isotropic elastic solids. Terrestrial planets in our solar system are approximately spherically symmetric and support toroidal and spheroidal modes. Discontinuities typically correspond with phase transitions in their interiors. Our rigidity result applies to such planets as we ensure that our conditions are satisfied in generally accepted models in the pres…
A rigidity problem on the round sphere
2015
We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.
Boundary rigidity for Randers metrics
2021
If a non-reversible Finsler norm is the sum of a reversible Finsler norm and a closed 1-form, then one can uniquely recover the 1-form up to potential fields from the boundary distance data. We also show a boundary rigidity result for Randers metrics where the reversible Finsler norm is induced by a Riemannian metric which is boundary rigid. Our theorems generalize Riemannian boundary rigidity results to some non-reversible Finsler manifolds. We provide an application to seismology where the seismic wave propagates in a moving medium.
The method of moving planes: a quantitative approach
2018
We review classical results where the method of the moving planes has been used to prove symmetry properties for overdetermined PDE's boundary value problems (such as Serrin's overdetermined problem) and for rigidity problems in geometric analysis (like Alexandrov soap bubble Theorem), and we give an overview of some recent results related to quantitative studies of the method of moving planes, where quantitative approximate symmetry results are obtained.