Search results for "53C42"

showing 3 items of 3 documents

Reilly's type inequality for the Laplacian associated to a density related with shrinkers for MCF

2015

Let $(\bar{M},,e^\psi)$ be a Riemannian manifold with a density, and let $M$ be a closed $n$-dimensional submanifold of $\bar{M}$ with the induced metric and density. We give an upper bound on the first eigenvalue $\lambda_1$ of the closed eigenvalue problem for $\Delta_\psi$ (the Laplacian on $M$ associated to the density) in terms of the average of the norm of the vector ${\vec{H}}_{{\psi}} + {\bar \nabla}$ with respect to the volume form induced by the density, where ${\vec{H}}_{{\psi}}$ is the mean curvature of $M$ associated to the density $e^\psi$. When $\bar{M}=\Bbb R^{n+k}$ or $\bar{M}=S^{n+k-1}$, the equality between $\lambda_1$ and its bound implies that $e^\psi$ is a Gaussian den…

Mathematics - Differential GeometryMean curvature flowMean curvature53C42 52C21Applied Mathematics010102 general mathematicsMathematics::Spectral TheoryRiemannian manifoldSubmanifold01 natural sciencesInduced metricUpper and lower bounds010101 applied mathematicsCombinatoricsVolume formDifferential Geometry (math.DG)FOS: MathematicsHigh Energy Physics::ExperimentMathematics::Differential Geometry0101 mathematicsLaplace operatorAnalysisMathematicsJournal of Differential Equations
researchProduct

Constant angle surfaces in 4-dimensional Minkowski space

2019

Abstract We first define a complex angle between two oriented spacelike planes in 4-dimensional Minkowski space, and then study the constant angle surfaces in that space, i.e. the oriented spacelike surfaces whose tangent planes form a constant complex angle with respect to a fixed spacelike plane. This notion is the natural Lorentzian analogue of the notion of constant angle surfaces in 4-dimensional Euclidean space. We prove that these surfaces have vanishing Gauss and normal curvatures, obtain representation formulas for the constant angle surfaces with regular Gauss maps and construct constant angle surfaces using PDE’s methods. We then describe their invariants of second order and show…

Surface (mathematics)Mathematics - Differential GeometryGauss mapPlane (geometry)Euclidean space53C40 53C42 53C50010102 general mathematicsMathematical analysisGeneral Physics and AstronomyTangentSpace (mathematics)01 natural sciencesDifferential Geometry (math.DG)0103 physical sciencesMinkowski spaceFOS: Mathematics010307 mathematical physicsGeometry and Topology0101 mathematicsConstant (mathematics)Mathematical PhysicsMathematics
researchProduct

Minimal unit vector fields

2002

We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.

Curl (mathematics)Killing vector fieldsSolenoidal vector fieldVector operatorcritical pointsGeneral Mathematicsminimal vector fieldsMathematical analysis53C4253C20Hopf vector fields53C25Sasakian manifoldsKilling vector fieldUnit vectorFundamental vector fieldMathematics::Differential GeometryVolume of vector fieldsComplex lamellar vector fieldVector potentialMathematicsTohoku Mathematical Journal
researchProduct