Search results for "53C42"
showing 3 items of 3 documents
Reilly's type inequality for the Laplacian associated to a density related with shrinkers for MCF
2015
Let $(\bar{M},,e^\psi)$ be a Riemannian manifold with a density, and let $M$ be a closed $n$-dimensional submanifold of $\bar{M}$ with the induced metric and density. We give an upper bound on the first eigenvalue $\lambda_1$ of the closed eigenvalue problem for $\Delta_\psi$ (the Laplacian on $M$ associated to the density) in terms of the average of the norm of the vector ${\vec{H}}_{{\psi}} + {\bar \nabla}$ with respect to the volume form induced by the density, where ${\vec{H}}_{{\psi}}$ is the mean curvature of $M$ associated to the density $e^\psi$. When $\bar{M}=\Bbb R^{n+k}$ or $\bar{M}=S^{n+k-1}$, the equality between $\lambda_1$ and its bound implies that $e^\psi$ is a Gaussian den…
Constant angle surfaces in 4-dimensional Minkowski space
2019
Abstract We first define a complex angle between two oriented spacelike planes in 4-dimensional Minkowski space, and then study the constant angle surfaces in that space, i.e. the oriented spacelike surfaces whose tangent planes form a constant complex angle with respect to a fixed spacelike plane. This notion is the natural Lorentzian analogue of the notion of constant angle surfaces in 4-dimensional Euclidean space. We prove that these surfaces have vanishing Gauss and normal curvatures, obtain representation formulas for the constant angle surfaces with regular Gauss maps and construct constant angle surfaces using PDE’s methods. We then describe their invariants of second order and show…
Minimal unit vector fields
2002
We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.