Search results for "540"
showing 10 items of 720 documents
Unveiling the oxidation behavior of liquid-phase exfoliated antimony nanosheets
2020
Abstract Antimonene, a monolayer of β-antimony, is increasingly attracting considerable attention, more than that of other monoelemental two-dimensional materials, due to its intriguing physical and chemical properties. Under ambient conditions, antimonene exhibits a high thermodynamic stability and good structural integrity. Some theoretical calculations predicted that antimonene would have a high oxidation tendency. However, it remains poorly investigated from the experimental point of view. In this work, we study the oxidation behavior of antimonene nanosheets (ANS) prepared by ultrasonication-assisted liquid-phase exfoliation. Using a set of forefront analytical techniques, a clear effe…
A no-carrier-added72Se/72As radionuclide generator based on solid phase extraction
2005
Summary72As-labelled radiopharmaceuticals could be a valuable resource for Positron Emission Tomography (PET). In particular, the long half-life of72As (T1/2= 26 h) facilitates the observation of long-term physiological or metabolic processes, such as the enrichment and distribution of antibodies in tumor tissue. This work describes the primary radiochemical separation of no-carrier-added (nca)72Se from cyclotron irradiated germanium targets and the development of a polystyrene type solid-phase extraction based72Se/72As radionuclide generator, avoiding the addition of any selenium carrier. The irradiated germanium target is dissolved in HFconcand selenium is reduced with hydrazine dihydroch…
Solubilization control by redox-switching of polysoaps
2008
Reversible changes in the self-organization of polysoaps may be induced by controlling their charge numbers via covalently bound redox moieties. This is illustrated with two viologen polysoaps, which in response to an electrochemical stimulus, change their solubility and aggregation in water, leading from homogeneously dissolved and aggregated molecules to collapsed ones and vice verse. Using the electrochemical quartz crystal microbalance (EQCM), it could be shown that the reversibility of this process is better than 95% in 16 cycles.
A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks
2022
An intrusion detection system, often known as an IDS, is extremely important for preventing attacks on a network, violating network policies, and gaining unauthorized access to a network. The effectiveness of IDS is highly dependent on data preprocessing techniques and classification models used to enhance accuracy and reduce model training and testing time. For the purpose of anomaly identification, researchers have developed several machine learning and deep learning-based algorithms; nonetheless, accurate anomaly detection with low test and train times remains a challenge. Using a hybrid feature selection approach and a deep neural network- (DNN-) based classifier, the authors of this re…
An Efficient Online/Offline Signcryption Scheme for Internet of Things in Smart Home
2022
The delivery of unified intelligent services is accomplished through a networked environment comprised of a wide array of electronic devices. Through the use of Internet of Things (IoT) technology, smart homes collect data from their surroundings and use it to improve their tenants’ lives. Remote control, real-time monitoring, and a fire alarm are all characteristics of smart home security. Since smart homes hold personally identifying information about their residents, security is critical to ensure their reliability and prevent data breaches. In this paper, a certificateless online/offline signcryption (COOS) technique for IoT-enabled smart homes is proposed. The proposed solution takes a…
SAN plot: A graphical representation of the signal, noise, and artifacts content of spectra
2019
The signal-to-noise ratio is an important property of NMR spectra. It allows to compare the sensitivity of experiments, the performance of hardware, etc. Its measurement is usually done in a rudimentary manner involving manual operation of selecting separately a region of the spectrum with signal and noise, respectively, applying some operation and returning the signal-to-noise ratio. We introduce here a simple method based on the analysis of the distribution of point intensities in one- and two-dimensional spectra. The signal/artifact/noise plots, (SAN plots) allows one to present in a graphical manner qualitative and quantitative information about spectra. It will be shown that besides me…
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
2012
Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016
Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC
2011
Measurements are presented from proton–proton collisions at centre-of-mass energies of \sqrt{s} = 0.9 , 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared…
The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
2022
Abstract. We report on the developments that enabled the field deployment of a fully-automated aerosol mass spectrometer, specially designed for high-altitude measurements on unpressurised aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single particle laser desorption and ionization, and (b) continuous thermal desorption / electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in-situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named ERICA (European Research council Instrument for the Chemical composition of Aerosols), operated successfully aboard t…
A comprehensive laboratory study on the immersion freezing behavior of illite NX particles: a comparison of 17 ice nucleation measurement techniques
2015
Immersion freezing is the most relevant heterogeneous ice nucleation mechanism through which ice crystals are formed in mixed-phase clouds. In recent years, an increasing number of laboratory experiments utilizing a variety of instruments have examined immersion freezing activity of atmospherically relevant ice-nucleating particles. However, an intercomparison of these laboratory results is a difficult task because investigators have used different ice nucleation (IN) measurement methods to produce these results. A remaining challenge is to explore the sensitivity and accuracy of these techniques and to understand how the IN results are potentially influenced or biased by experimental param…