Search results for "54D65"
showing 2 items of 2 documents
Variations of selective separability II: Discrete sets and the influence of convergence and maximality
2012
A space $X$ is called selectively separable(R-separable) if for every sequence of dense subspaces $(D_n : n\in\omega)$ one can pick finite (respectively, one-point) subsets $F_n\subset D_n$ such that $\bigcup_{n\in\omega}F_n$ is dense in $X$. These properties are much stronger than separability, but are equivalent to it in the presence of certain convergence properties. For example, we show that every Hausdorff separable radial space is R-separable and note that neither separable sequential nor separable Whyburn spaces have to be selectively separable. A space is called \emph{d-separable} if it has a dense $\sigma$-discrete subspace. We call a space $X$ D-separable if for every sequence of …
Comparing weak versions of separability
2012
Our aim is to investigate spaces with sigma-discrete and meager dense sets, as well as selective versions of these properties. We construct numerous examples to point out the differences between these classes while answering questions of Tkachuk [30], Hutchinson [17] and the authors of [8].