Search results for "54F45"
showing 3 items of 3 documents
A note on the dimensions of Assouad and Aikawa
2013
We show that in Euclidean space and other regular metric spaces, the notions of dimensions defined by Assouad and Aikawa coincide. In addition, in more general metric spaces, we study the relationship between these two dimensions and a related codimension and give an application of the Aikawa (co)dimension for the Hardy inequalities.
Measures with predetermined regularity and inhomogeneous self-similar sets
2016
We show that if $X$ is a uniformly perfect complete metric space satisfying the finite doubling property, then there exists a fully supported measure with lower regularity dimension as close to the lower dimension of $X$ as we wish. Furthermore, we show that, under the condensation open set condition, the lower dimension of an inhomogeneous self-similar set $E_C$ coincides with the lower dimension of the condensation set $C$, while the Assouad dimension of $E_C$ is the maximum of the Assouad dimensions of the corresponding self-similar set $E$ and the condensation set $C$. If the Assouad dimension of $C$ is strictly smaller than the Assouad dimension of $E$, then the upper regularity dimens…
Assouad dimension, Nagata dimension, and uniformly close metric tangents
2013
We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper is devoted to the study of when these metric dimensions of a metric space are locally given by the dimensions of its metric tangents. Having uniformly close tangents is not sufficient. What is needed in addition is either that the tangents have dimension with uniform constants independent from the point and the tangent, or that the tangents are unique. We will apply our results to equiregular subRiemannian manifolds and show that locally their Nagata dimension equals the to…