Search results for "57M50"

showing 5 items of 5 documents

On hyperbolic type involutions

2001

We give a bound on the number of hyperbolic knots which are double covered by a fixed (non hyperbolic) manifold in terms of the number of tori and of the invariants of the Seifert fibred pieces of its Jaco-Shalen-Johannson decomposition. We also investigate the problem of finding the non hyperbolic knots with the same double cover of a hyperbolic one and give several examples to illustrate the results.

Bonahon-Siebenmann decomposition[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Seifert fibrationsMathematics::Dynamical Systemscyclic branched coversMathematics::Geometric Topology57M5057M6057M12[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]57M25orbifoldshyperbolic knots[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Small $C^1$ actions of semidirect products on compact manifolds

2020

Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…

Pure mathematics37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Cyclic groupDynamical Systems (math.DS)Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60$C^1$–close to the identityMathematics - Geometric TopologyPrimary 37C85. Secondary 20E22 57K32[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMapping torusFOS: Mathematics57R3520E220101 mathematicsAbelian groupMathematics - Dynamical SystemsMathematics37C85010102 general mathematicsGeometric Topology (math.GT)groups acting on manifoldsRiemannian manifoldSurface (topology)57M50fibered $3$–manifoldhyperbolic dynamicsUnit circleMonodromy010307 mathematical physicsGeometry and TopologyFinitely generated groupMathematics - Group Theory
researchProduct

On cyclic branched coverings of prime knots

2007

We prove that a prime knot K is not determined by its p-fold cyclic branched cover for at most two odd primes p. Moreover, we show that for a given odd prime p, the p-fold cyclic branched cover of a prime knot K is the p-fold cyclic branched cover of at most one more knot K' non equivalent to K. To prove the main theorem, a result concerning the symmetries of knots is also obtained. This latter result can be interpreted as a characterisation of the trivial knot.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Primary 57M25010102 general mathematicsGeometric Topology (math.GT)01 natural sciencesMathematics::Geometric Topology57M25 (57M12 57M50)57M50CombinatoricsMathematics - Geometric TopologyKnot (unit)Prime knot[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesHomogeneous spaceSecondary 57M12FOS: MathematicsPrimary 57M25; Secondary 57M12; 57M50010307 mathematical physicsGeometry and Topology0101 mathematicsComputingMilieux_MISCELLANEOUS[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Mathematics
researchProduct

A criterion for homeomorphism between closed Haken manifolds

2003

In this paper we consider two connected closed Haken manifolds denoted by M^3 and N^3, with the same Gromov simplicial volume. We give a simple homological criterion to decide when a given map f: M^3-->N^3 between M^3 and N^3 can be changed by a homotopy to a homeomorphism. We then give a convenient process for constructing maps between M^3 and N^3 satisfying the homological hypothesis of the map f.

Pure mathematicsHaken manifoldHaken manifoldAlgebraic topologyGromov simplicial volumeMathematics::Algebraic TopologyCombinatoricsMathematics - Geometric TopologySeifert fibered spaceSimple (abstract algebra)FOS: Mathematicsfinite coveringMathematics::Symplectic Geometry57M50 51H20MathematicsHomotopyhyperbolic manifoldhomology equivalenceGeometric Topology (math.GT)General MedicineMathematics::Geometric Topology57M50ManifoldHomeomorphism51H20Geometry and TopologyComptes Rendus de l'Académie des Sciences - Series I - Mathematics
researchProduct

On the classification of mapping class actions on Thurston's asymmetric metric

2011

AbstractWe study the action of the elements of the mapping class group of a surface of finite type on the Teichmüller space of that surface equipped with Thurston's asymmetric metric. We classify such actions as elliptic, parabolic, hyperbolic and pseudo-hyperbolic, depending on whether the translation distance of such an element is zero or positive and whether the value of this translation distance is attained or not, and we relate these four types to Thurston's classification of mapping class elements. The study is parallel to the one made by Bers in the setting of Teichmüller space equipped with Teichmüller's metric, and to the one made by Daskalopoulos and Wentworth in the setting of Te…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Teichmüller spacePure mathematicsMathematics::Dynamical SystemsGeneral MathematicsProduct metric01 natural sciencesIntrinsic metricMathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics32G15 ; 30F60 ; 57M50 ; 57N05Teichmüller spaceMathematics::Complex VariablesInjective metric space010102 general mathematicsMathematical analysisThurston's asymmetric metricGeometric Topology (math.GT)mapping class groupSurface (topology)Mathematics::Geometric TopologyMapping class groupConvex metric spaceMetric (mathematics)010307 mathematical physicsMathematics::Differential Geometry
researchProduct