Search results for "57M60"

showing 7 items of 7 documents

On hyperbolic type involutions

2001

We give a bound on the number of hyperbolic knots which are double covered by a fixed (non hyperbolic) manifold in terms of the number of tori and of the invariants of the Seifert fibred pieces of its Jaco-Shalen-Johannson decomposition. We also investigate the problem of finding the non hyperbolic knots with the same double cover of a hyperbolic one and give several examples to illustrate the results.

Bonahon-Siebenmann decomposition[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Seifert fibrationsMathematics::Dynamical Systemscyclic branched coversMathematics::Geometric Topology57M5057M6057M12[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]57M25orbifoldshyperbolic knots[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct

Multiplicative loops of 2-dimensional topological quasifields

2015

We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.

CollineationAlgebraic structureDimension (graph theory)Topology01 natural sciencesSection (fiber bundle)TermészettudományokFOS: MathematicsCollineation groupLocally compact space0101 mathematicsMatematika- és számítástudományokMathematicsAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsMultiplicative function20N05 22A30 12K99 51A40 57M60Lie groupMathematics - Rings and AlgebrasSections in Lie group010101 applied mathematicsTranslation planes and speadsMultiplicative loops of locally compact quasifieldRings and Algebras (math.RA)Settore MAT/03 - Geometria
researchProduct

Small $C^1$ actions of semidirect products on compact manifolds

2020

Let $T$ be a compact fibered $3$--manifold, presented as a mapping torus of a compact, orientable surface $S$ with monodromy $\psi$, and let $M$ be a compact Riemannian manifold. Our main result is that if the induced action $\psi^*$ on $H^1(S,\mathbb{R})$ has no eigenvalues on the unit circle, then there exists a neighborhood $\mathcal U$ of the trivial action in the space of $C^1$ actions of $\pi_1(T)$ on $M$ such that any action in $\mathcal{U}$ is abelian. We will prove that the same result holds in the generality of an infinite cyclic extension of an arbitrary finitely generated group $H$, provided that the conjugation action of the cyclic group on $H^1(H,\mathbb{R})\neq 0$ has no eige…

Pure mathematics37D30[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Cyclic groupDynamical Systems (math.DS)Group Theory (math.GR)01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60$C^1$–close to the identityMathematics - Geometric TopologyPrimary 37C85. Secondary 20E22 57K32[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesMapping torusFOS: Mathematics57R3520E220101 mathematicsAbelian groupMathematics - Dynamical SystemsMathematics37C85010102 general mathematicsGeometric Topology (math.GT)groups acting on manifoldsRiemannian manifoldSurface (topology)57M50fibered $3$–manifoldhyperbolic dynamicsUnit circleMonodromy010307 mathematical physicsGeometry and TopologyFinitely generated groupMathematics - Group Theory
researchProduct

Hyperbolic isometries versus symmetries of links

2009

We prove that every finite group is the orientation-preserving isometry group of the complement of a hyperbolic link in the 3-sphere.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Pure mathematicsHyperbolic groupHyperbolic linkTotally geodesic surfaces01 natural sciencesRelatively hyperbolic group57M60Mathematics - Geometric Topology[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]Hyperbolic linksHyperbolic space010102 general mathematicsHyperbolic 3-manifoldHyperbolic manifoldGeometric Topology (math.GT)Algebra010307 mathematical physicsGeometry and TopologyIsometry groupHyperbolic Dehn surgeryHyperbolic Dehn surgeryTopology and its Applications
researchProduct

Hyperbolicity as an obstruction to smoothability for one-dimensional actions

2017

Ghys and Sergiescu proved in the $80$s that Thompson's group $T$, and hence $F$, admits actions by $C^{\infty}$ diffeomorphisms of the circle . They proved that the standard actions of these groups are topologically conjugate to a group of $C^\infty$ diffeomorphisms. Monod defined a family of groups of piecewise projective homeomorphisms, and Lodha-Moore defined finitely presentable groups of piecewise projective homeomorphisms. These groups are of particular interest because they are nonamenable and contain no free subgroup. In contrast to the result of Ghys-Sergiescu, we prove that the groups of Monod and Lodha-Moore are not topologically conjugate to a group of $C^1$ diffeomorphisms. Fur…

Pure mathematicsMathematics::Dynamical Systems[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Group Theory (math.GR)Dynamical Systems (math.DS)Fixed pointPSL01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]57M60Homothetic transformationMathematics::Group Theorypiecewise-projective homeomorphisms0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematicsreal37C85 57M60 (Primary) 43A07 37D40 37E05 (Secondary)diffeomorphismsPrimary 37C85 57M60. Secondary 43A07 37D40 37E0543A07Group (mathematics)37C8537D40010102 general mathematicsMSC (2010) : Primary: 37C85 57M60Secondary: 37D40 37E05 43A0737E0516. Peace & justiceAction (physics)hyperbolic dynamicsrigidityc-1 actionsbaumslag-solitar groupshomeomorphismslocally indicable groupPiecewiseInterval (graph theory)010307 mathematical physicsGeometry and TopologyTopological conjugacyMathematics - Group Theoryintervalgroup actions on the interval
researchProduct

Ping-pong configurations and circular orders on free groups

2017

We discuss actions of free groups on the circle with "ping-pong" dynamics; these are dynamics determined by a finite amount of combinatorial data, analogous to Schottky domains or Markov partitions. Using this, we show that the free group $F_n$ admits an isolated circular order if and only if n is even, in stark contrast with the case for linear orders. This answers a question from (Mann, Rivas, 2016). Inspired by work of Alvarez, Barrientos, Filimonov, Kleptsyn, Malicet, Menino and Triestino, we also exhibit examples of "exotic" isolated points in the space of all circular orders on $F_2$. Analogous results are obtained for linear orders on the groups $F_n \times \mathbb{Z}$.

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC2010: Primary 20F60 57M60. Secondary 20E05 37C85 37E05 37E10 57M60.Extension (predicate logic)Group Theory (math.GR)Dynamical Systems (math.DS)Space (mathematics)20F60 57M60[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsFree groupsOne-dimensional dynamicsFree groupPing pongFOS: MathematicsDiscrete Mathematics and CombinatoricsOrder (group theory)Geometry and TopologyMathematics - Dynamical SystemsMathematics - Group TheoryMathematicsOrders on groups
researchProduct

Finite quotients of the Picard group and related hyperbolic tetrahedral and Bianchi groups

2001

There is an extensive literature on the fi{}nite index subgroups and the fi{}nite quotient groups of the Picard group $PSL\left(2,\mathbb{Z}\mid i\mid\right)$. The main result of the present paper is the classifi{}cation of all linear fractional groups $PSL\left(2,p^{m}\right)$ which occur as fi{}nite quotients of the Picard group. We classify also the fi{}nite quotients of linear fractional type of various related hyperbolic tetrahedral groups which uniformize the cusped orientable hyperbolic 3-orbifolds of minimal volumes. Also these cusped tetrahedral groups are of Bianchi type, that is of the form $PSL\left(2,\mathbb{Z}\mid\omega\mid\right)$ or $PGL\left(2,\mathbb{Z}\mid\omega\mid\right…

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]20F38hyperbolic 3-orbifold and 3-manifoldhyperbolic tetrahedral group[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]Picard group57S17Mathematics::Geometric Topology57M60[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]
researchProduct