Search results for "58D29"

showing 1 items of 1 documents

N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

1991

We discuss gauge theory with a topological N=2 symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli space $\cal M$ and the partition function equals the Euler number of $\cal M$. We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics and introduce a new kind of supersymmetric quantum mechanics based on the Gauss-Codazzi equations. We interpret the gauge theory actions from the Atiyah-Jeffrey point of view and relate them to supersymmetric quantum mechanics on spaces of…

High Energy Physics - Theory58Z05PhysicsInstantonFOS: Physical sciencesStatistical and Nonlinear PhysicsRiemannian geometry58D2958G26TopologyCasson invariant58D27Matrix modelModuli spaceHigh Energy Physics::Theorysymbols.namesakeHigh Energy Physics - Theory (hep-th)81Q60Euler characteristic57R20symbolsSupersymmetric quantum mechanicsGauge theoryMathematical PhysicsCommunications in Mathematical Physics
researchProduct