Search results for "58J32"

showing 6 items of 6 documents

A reflection approach to the broken ray transform

2013

We reduce the broken ray transform on some Riemannian manifolds (with corners) to the geodesic ray transform on another manifold, which is obtained from the original one by reflection. We give examples of this idea and present injectivity results for the broken ray transform using corresponding earlier results for the geodesic ray transform. Examples of manifolds where the broken ray transform is injective include Euclidean cones and parts of the spheres $S^n$. In addition, we introduce the periodic broken ray transform and use the reflection argument to produce examples of manifolds where it is injective. We also give counterexamples to both periodic and nonperiodic cases. The broken ray t…

Mathematics - Differential GeometryPure mathematicsGeodesicmatematiikkaGeneral MathematicsAstrophysics::High Energy Astrophysical PhenomenaInjective functionManifold53C65 78A05 (Primary) 35R30 58J32 (Secondary)Mathematics - Analysis of PDEsReflection (mathematics)Differential Geometry (math.DG)Euclidean geometryFOS: MathematicsSPHERESMathematics::Differential GeometryCounterexampleMathematicsbroken ray transformAnalysis of PDEs (math.AP)
researchProduct

Partial data inverse problems for the Hodge Laplacian

2017

We prove uniqueness results for a Calderon type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relative or absolute boundary conditions, and on the construction of complex geometric optics solutions which reduce the Calderon type problem to a tensor tomography problem for 2-tensors. The arguments in this paper allow to establish partial data results for elliptic systems that generalize the scalar resu…

Mathematics - Differential GeometryPure mathematicsadmissible manifoldsType (model theory)partial data01 natural sciences58J32inversio-ongelmatMathematics - Analysis of PDEsFOS: MathematicsBoundary value problemUniquenessTensor0101 mathematicsMathematicsNumerical Analysisabsolute and relative boundary conditionsGeometrical opticsinverse problemsApplied Mathematicsta111010102 general mathematicsScalar (physics)Inverse problemCarleman estimates010101 applied mathematics35R30Differential Geometry (math.DG)Hodge LaplacianLaplace operatorAnalysisAnalysis of PDEs (math.AP)Analysis & PDE
researchProduct

Pestov identities and X-ray tomography on manifolds of low regularity

2021

We prove that the geodesic X-ray transform is injective on scalar functions and (solenoidally) on one-forms on simple Riemannian manifolds $(M,g)$ with $g \in C^{1,1}$. In addition to a proof, we produce a redefinition of simplicity that is compatible with rough geometry. This $C^{1,1}$-regularity is optimal on the H\"older scale. The bulk of the article is devoted to setting up a calculus of differential and curvature operators on the unit sphere bundle atop this non-smooth structure.

Mathematics - Differential Geometrynon-smooth geometrygeodesic X-ray tomographyinverse problems44A12 53C22 53C65 58J32Pestov identityinversio-ongelmatdifferentiaaligeometriaRiemannin monistotMathematics - Analysis of PDEsDifferential Geometry (math.DG)tomografiaintegraalilaskentaFOS: MathematicsMathematics::Differential Geometryintegral geometryAnalysis of PDEs (math.AP)
researchProduct

The Calderón problem with partial data on manifolds and applications

2013

We consider Calderon's inverse problem with partial data in dimensions $n \geq 3$. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of revolution. We prove local uniqueness in the Calderon problem with partial data in admissible geometries, and global uniqueness under an additional concavity assumption. This work unifies two earlier approaches to this problem (\cite{KSU} and \cite{I}) and extends both. The proofs are based on impr…

Mathematics - Differential GeometryPure mathematicsGeodesiccalderón problem35J10Boundary (topology)Conformal mappartial data58J32Integral geometryMathematics - Analysis of PDEsFOS: MathematicsUniquenessMathematicsFlatness (mathematics)Numerical AnalysisCalderón problemEuclidean spaceApplied Mathematicsta11135R30Differential Geometry (math.DG)inverse problemSurface of revolutionAnalysisAnalysis of PDEs (math.AP)Analysis & PDE
researchProduct

A double mean field equation related to a curvature prescription problem

2019

We study a double mean field-type PDE related to a prescribed curvature problem on compacts surfaces with boundary. We provide a general blow-up analysis, then a Moser-Trudinger inequality, which gives energy-minimizing solutions for some range of parameters. Finally, we provide existence of min-max solutions for a wider range of parameters, which is dense in the plane if $��$ is not simply connected.

Blow–up analysiPlane (geometry)Applied Mathematics010102 general mathematicsMathematics::Analysis of PDEs35J20 58J32Boundary (topology)Unit normal vectorCurvature01 natural sciencesConformal metric010101 applied mathematicsMathematics - Analysis of PDEsVariational methodsMean field equationSimply connected spaceFOS: Mathematics0101 mathematicsPrescribed curvature problemAnalysisMathematical physicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Boundary reconstruction for the broken ray transform

2013

We reduce boundary determination of an unknown function and its normal derivatives from the (possibly weighted and attenuated) broken ray data to the injectivity of certain geodesic ray transforms on the boundary. For determination of the values of the function itself we obtain the usual geodesic ray transform, but for derivatives this transform has to be weighted by powers of the second fundamental form. The problem studied here is related to Calder\'on's problem with partial data.

Mathematics - Differential GeometryDifferential Geometry (math.DG)GeodesicAstrophysics::High Energy Astrophysical PhenomenaGeneral MathematicsSecond fundamental formta111Mathematical analysisFOS: MathematicsBoundary (topology)Function (mathematics)53C65 78A05 (Primary) 35R30 58J32 (Secondary)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct