Search results for "58Z05"

showing 2 items of 2 documents

N=2 topological gauge theory, the Euler characteristic of moduli spaces, and the Casson invariant

1991

We discuss gauge theory with a topological N=2 symmetry. This theory captures the de Rham complex and Riemannian geometry of some underlying moduli space $\cal M$ and the partition function equals the Euler number of $\cal M$. We explicitly deal with moduli spaces of instantons and of flat connections in two and three dimensions. To motivate our constructions we explain the relation between the Mathai-Quillen formalism and supersymmetric quantum mechanics and introduce a new kind of supersymmetric quantum mechanics based on the Gauss-Codazzi equations. We interpret the gauge theory actions from the Atiyah-Jeffrey point of view and relate them to supersymmetric quantum mechanics on spaces of…

High Energy Physics - Theory58Z05PhysicsInstantonFOS: Physical sciencesStatistical and Nonlinear PhysicsRiemannian geometry58D2958G26TopologyCasson invariant58D27Matrix modelModuli spaceHigh Energy Physics::Theorysymbols.namesakeHigh Energy Physics - Theory (hep-th)81Q60Euler characteristic57R20symbolsSupersymmetric quantum mechanicsGauge theoryMathematical PhysicsCommunications in Mathematical Physics
researchProduct

General conservation law for a class of physics field theories

2019

In this paper we form a general conservation law that unifies a class of physics field theories. For this we first introduce the notion of a general field as a formal sum differential forms on a Minkowski manifold. Thereafter, we employ the action principle to define the conservation law for such general fields. By construction, particular field notions of physics, such as electric field strength, stress, strain etc. become instances of the general field. Hence, the differential equations that constitute physics field theories become also instances of the general conservation law. Accordingly, the general field and the general conservation law together correspond to a large class of physics…

Mathematics - Differential GeometryDifferential Geometry (math.DG)FOS: MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Mathematical Physics53Z05 58Z05 58J45
researchProduct