Search results for "5xFAD"

showing 2 items of 2 documents

Impact of Acute and Chronic Amyloid-β Peptide Exposure on Gut Microbial Commensals in the Mouse

2020

Alzheimer’s disease (AD) is the most common form of dementia. Besides its cognitive phenotype, AD leads to crucial changes in gut microbiome composition in model mice and in patients, but the reported data are still highly inconsistent. Therefore, we investigated chronic effects of AD-characteristic neurotoxic amyloid-β (Aβ) peptides as provided by transgenic overexpression (5xFAD mouse model) and acute effects due to oral application of Aβ on gut microbes. Astonishingly, one-time feeding of wild type mice with Aβ42 provoked immediate changes in gut microbiome composition (β diversity) as compared to controls. Such obvious changes were not observed when comparing 5xFAD mice with wild type l…

Microbiology (medical)mouse modelTransgenelcsh:QR1-502microbiomeDiseaseGut floraMicrobiologylcsh:Microbiology03 medical and health sciencesIn vivomedicineMicrobiomeOriginal Research030304 developmental biologyAmyloid-β peptide0303 health sciencesanti-microbialbiology030306 microbiologyWild typebiology.organism_classificationmedicine.disease5xFADPhenotypeImmunologyAlzheimer’s diseaseDysbiosisFrontiers in Microbiology
researchProduct

Amyloid Beta-Mediated Changes in Synaptic Function and Spine Number of Neocortical Neurons Depend on NMDA Receptors

2021

Onset and progression of Alzheimer’s disease (AD) pathophysiology differs between brain regions. The neocortex, for example, is a brain region that is affected very early during AD. NMDA receptors (NMDARs) are involved in mediating amyloid beta (Aβ) toxicity. NMDAR expression, on the other hand, can be affected by Aβ. We tested whether the high vulnerability of neocortical neurons for Aβ-toxicity may result from specific NMDAR expression profiles or from a particular regulation of NMDAR expression by Aβ. Electrophysiological analyses suggested that pyramidal cells of 6-months-old wildtype mice express mostly GluN1/GluN2A NMDARs. While synaptic NMDAR-mediated currents are unaltered in 5xFAD …

QH301-705.5Amyloid betasomatosensory cortexDendritic SpinesMice TransgenicNeocortexSomatosensory systemReceptors N-Methyl-D-AspartateCatalysisArticleInorganic ChemistryAlzheimer Diseasemental disordersmedicineAnimalsBiology (General)Physical and Theoretical ChemistryQD1-999Molecular BiologySpectroscopyNeuronsNeocortexAmyloid beta-PeptidesbiologyPyramidal Cellsmusculoskeletal neural and ocular physiologyOrganic ChemistryWild typeAmyloid betaExcitatory Postsynaptic PotentialsGeneral Medicine5xFADPathophysiologyComputer Science ApplicationsNMDARChemistryElectrophysiologyProtein Subunitsmedicine.anatomical_structurenervous systemKnockout mouseSynapsesbiology.proteinNMDA receptorbiological phenomena cell phenomena and immunityNeuroscienceAlzheimer’s diseasepsychological phenomena and processesInternational Journal of Molecular Sciences
researchProduct