Search results for "60F10"
showing 9 items of 9 documents
Large deviations results for subexponential tails, with applications to insurance risk
1996
AbstractConsider a random walk or Lévy process {St} and let τ(u) = inf {t⩾0 : St > u}, P(u)(·) = P(· | τ(u) < ∞). Assuming that the upwards jumps are heavy-tailed, say subexponential (e.g. Pareto, Weibull or lognormal), the asymptotic form of the P(u)-distribution of the process {St} up to time τ(u) is described as u → ∞. Essentially, the results confirm the folklore that level crossing occurs as result of one big jump. Particular sharp conclusions are obtained for downwards skip-free processes like the classical compound Poisson insurance risk process where the formulation is in terms of total variation convergence. The ideas of the proof involve excursions and path decompositions for Mark…
Large systems of path-repellent Brownian motions in a trap at positive temperature
2006
We study a model of $ N $ mutually repellent Brownian motions under confinement to stay in some bounded region of space. Our model is defined in terms of a transformed path measure under a trap Hamiltonian, which prevents the motions from escaping to infinity, and a pair-interaction Hamiltonian, which imposes a repellency of the $N$ paths. In fact, this interaction is an $N$-dependent regularisation of the Brownian intersection local times, an object which is of independent interest in the theory of stochastic processes. The time horizon (interpreted as the inverse temperature) is kept fixed. We analyse the model for diverging number of Brownian motions in terms of a large deviation princip…
MODERATE DEVIATION PRINCIPLES FOR BIFURCATING MARKOV CHAINS: CASE OF FUNCTIONS DEPENDENT OF ONE VARIABLE
2021
The main purpose of this article is to establish moderate deviation principles for additive functionals of bifurcating Markov chains. Bifurcating Markov chains are a class of processes which are indexed by a regular binary tree. They can be seen as the models which represent the evolution of a trait along a population where each individual has two offsprings. Unlike the previous results of Bitseki, Djellout \& Guillin (2014), we consider here the case of functions which depend only on one variable. So, mainly inspired by the recent works of Bitseki \& Delmas (2020) about the central limit theorem for general additive functionals of bifurcating Markov chains, we give here a moderate deviatio…
MODERATE DEVIATION PRINCIPLES FOR KERNEL ESTIMATOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS
2021
Bitseki and Delmas (2021) have studied recently the central limit theorem for kernel estimator of invariant density in bifurcating Markov chains models. We complete their work by proving a moderate deviation principle for this estimator. Unlike the work of Bitseki and Gorgui (2021), it is interesting to see that the distinction of the two regimes disappears and that we are able to get moderate deviation principle for large values of the ergodic rate. It is also interesting and surprising to see that for moderate deviation principle, the ergodic rate begins to have an impact on the choice of the bandwidth for values smaller than in the context of central limit theorem studied by Bitseki and …
Analysis of random walks on a hexagonal lattice
2019
We consider a discrete-time random walk on the nodes of an unbounded hexagonal lattice. We determine the probability generating functions, the transition probabilities and the relevant moments. The convergence of the stochastic process to a 2-dimensional Brownian motion is also discussed. Furthermore, we obtain some results on its asymptotic behavior making use of large deviation theory. Finally, we investigate the first-passage-time problem of the random walk through a vertical straight-line. Under suitable symmetry assumptions we are able to determine the first-passage-time probabilities in a closed form, which deserve interest in applied fields.
Probabilities of large values for sums of i.i.d. non-negative random variables with regular tail of index $-1$
2021
Let $\xi_1, \xi_2, \dots$ be i.i.d. non-negative random variables whose tail varies regularly with index $-1$, let $S_n$ be the sum and $M_n$ the largest of the first $n$ values. We clarify for which sequences $x_n\to\infty$ we have $\mathbb P(S_n \ge x_n) \sim \mathbb P(M_n \ge x_n)$ as $n\to\infty$. Outside this regime, the typical size of $S_n$ conditioned on exceeding $x_n$ is not completely determined by the largest summand and we provide an appropriate correction term which involves the integrated tail of $\xi_1$.
A PHASE TRANSITION FOR LARGE VALUES OF BIFURCATING AUTOREGRESSIVE MODELS
2019
We describe the asymptotic behavior of the number $$Z_n[a_n,\infty )$$ of individuals with a large value in a stable bifurcating autoregressive process, where $$a_n\rightarrow \infty $$ . The study of the associated first moment is equivalent to the annealed large deviation problem of an autoregressive process in a random environment. The trajectorial behavior of $$Z_n[a_n,\infty )$$ is obtained by the study of the ancestral paths corresponding to the large deviation event together with the environment of the process. This study of large deviations of autoregressive processes in random environment is of independent interest and achieved first. The estimates for bifurcating autoregressive pr…
Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon
2023
This article studies large and local large deviations for sums of i.i.d. real-valued random variables in the domain of attraction of an $\alpha$-stable law, $\alpha\in (0,2]$, with emphasis on the case $\alpha=2$. There are two different scenarios: either the deviation is realised via a collective behaviour with all summands contributing to the deviation (a Gaussian scenario), or a single summand is atypically large and contributes to the deviation (a one-big-jump scenario). Such results are known when $\alpha \in (0,2)$ (large deviations always follow a one big-jump scenario) or when the random variables admit a moment of order $2+\delta$ for some $\delta>0$. We extend these results, inclu…
Random time-changes and asymptotic results for a class of continuous-time Markov chains on integers with alternating rates
2021
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of the random variables of the process. Moreover we study independent random time-changes with the inverse of the stable subordinator, the stable subordinator and the tempered stable subodinator. We also present some asymptotic results in the fashion of large deviations. These results give some generalizations of those presented in Di Crescenzo A., Macci C., Martinucci B. (2014).