Search results for "60J75"

showing 2 items of 2 documents

Quantitative ergodicity for some switched dynamical systems

2012

International audience; We provide quantitative bounds for the long time behavior of a class of Piecewise Deterministic Markov Processes with state space Rd × E where E is a finite set. The continuous component evolves according to a smooth vector field that switches at the jump times of the discrete coordinate. The jump rates may depend on the whole position of the process. Under regularity assumptions on the jump rates and stability conditions for the vector fields we provide explicit exponential upper bounds for the convergence to equilibrium in terms of Wasserstein distances. As an example, we obtain convergence results for a stochastic version of the Morris-Lecar model of neurobiology.

Statistics and ProbabilitySwitched dynamical systemsDynamical systems theoryMarkov process01 natural sciences34D2393E15010104 statistics & probabilitysymbols.namesakeCouplingPiecewise Deterministic Markov ProcessPosition (vector)60J25FOS: MathematicsState spaceApplied mathematicsWasserstein distance0101 mathematicsMathematicsProbability (math.PR)010102 general mathematicsErgodicityErgodicity[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Linear Differential EquationsPiecewisesymbolsJumpAMS-MSC. 60J75; 60J25; 93E15; 34D23Vector fieldStatistics Probability and Uncertainty60J75[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Simulation of BSDEs with jumps by Wiener Chaos Expansion

2016

International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.

Statistics and ProbabilityWiener Chaos expansionDiscretizationMonte Carlo methodTime stepConditional expectation01 natural sciences010104 statistics & probabilitybackward stochastic differential equations with jumpsFOS: MathematicsApplied mathematics60H10 60J75 60H35 65C05 65G99 60H070101 mathematicsMathematicsPolynomial chaosApplied MathematicsNumerical analysis010102 general mathematicsMathematical analysista111Probability (math.PR)numerical methodCHAOS (operating system)[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationScheme (mathematics)Mathematics - Probability
researchProduct