Search results for "62L20"

showing 5 items of 5 documents

Convergence of Markovian Stochastic Approximation with discontinuous dynamics

2016

This paper is devoted to the convergence analysis of stochastic approximation algorithms of the form $\theta_{n+1} = \theta_n + \gamma_{n+1} H_{\theta_n}({X_{n+1}})$, where ${\left\{ {\theta}_n, n \in {\mathbb{N}} \right\}}$ is an ${\mathbb{R}}^d$-valued sequence, ${\left\{ {\gamma}_n, n \in {\mathbb{N}} \right\}}$ is a deterministic stepsize sequence, and ${\left\{ {X}_n, n \in {\mathbb{N}} \right\}}$ is a controlled Markov chain. We study the convergence under weak assumptions on smoothness-in-$\theta$ of the function $\theta \mapsto H_{\theta}({x})$. It is usually assumed that this function is continuous for any $x$; in this work, we relax this condition. Our results are illustrated by c…

Control and OptimizationStochastic approximationMarkov processMathematics - Statistics Theorydiscontinuous dynamicsStatistics Theory (math.ST)Stochastic approximation01 natural sciencesCombinatorics010104 statistics & probabilitysymbols.namesake[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Convergence (routing)FOS: Mathematics0101 mathematics62L20state-dependent noiseComputingMilieux_MISCELLANEOUSMathematicsta112SequenceconvergenceApplied Mathematicsta111010102 general mathematicsFunction (mathematics)[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]16. Peace & justice[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulationcontrolled Markov chainMarkovian stochastic approximationsymbolsStochastic approximat
researchProduct

Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Components Analysis

2017

International audience; The geometric median covariation matrix is a robust multivariate indicator of dispersion which can be extended without any difficulty to functional data. We define estimators, based on recursive algorithms, that can be simply updated at each new observation and are able to deal rapidly with large samples of high dimensional data without being obliged to store all the data in memory. Asymptotic convergence properties of the recursive algorithms are studied under weak conditions. The computation of the principal components can also be performed online and this approach can be useful for online outlier detection. A simulation study clearly shows that this robust indicat…

Statistics and ProbabilityComputer scienceMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciences010104 statistics & probabilityMatrix (mathematics)Dimension (vector space)Geometric medianStochastic gradientFOS: Mathematics0101 mathematicsL1-median010102 general mathematicsEstimator[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Geometric medianCovariance[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]Functional dataMSC: 62G05 62L20Principal component analysisProjection pursuitAnomaly detectionRecursive robust estimationStatistics Probability and UncertaintyAlgorithm
researchProduct

Recursive estimation of the conditional geometric median in Hilbert spaces

2012

International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…

Statistics and ProbabilityMallows-Wasserstein distanceRobbins-Monroasymptotic normalityCLTcentral limit theoremAsymptotic distributionMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMallows–Wasserstein distanceonline data010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]60F05FOS: MathematicsApplied mathematics[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematics62L20MathematicsaveragingSequential estimation010102 general mathematicsEstimatorRobbins–MonroConditional probability distribution[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Geometric medianstochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]robust estimatorRate of convergenceConvergence of random variablesStochastic gradient.kernel regressionsequential estimationKernel regressionStatistics Probability and Uncertainty
researchProduct

Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data

2013

When the study variable is functional and storage capacities are limited or transmission costs are high, selecting with survey sampling techniques a small fraction of the observations is an interesting alternative to signal compression techniques, particularly when the goal is the estimation of simple quantities such as means or totals. We extend, in this functional framework, model-assisted estimators with linear regression models that can take account of auxiliary variables whose totals over the population are known. We first show, under weak hypotheses on the sampling design and the regularity of the trajectories, that the estimator of the mean function as well as its variance estimator …

Statistics and ProbabilityMean squared errorMathematics - Statistics TheoryStatistics Theory (math.ST)Hájek estimator62D05; 62E20 62M9901 natural sciences010104 statistics & probabilityMinimum-variance unbiased estimatorBias of an estimator[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]60F050502 economics and businessStatisticsConsistent estimatorFOS: Mathematicscovariance functionHorvitz-Thompson estimator[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]62L200101 mathematicssurvey sampling050205 econometrics Variance functionMathematicsGREG05 social sciencesEstimator[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]calibration[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]linear interpolation.linear interpolationEfficient estimatorStatistics Probability and Uncertaintyfunctional linear modelInvariant estimator
researchProduct

Synchronization and fluctuations for interacting stochastic systems with individual and collective reinforcement

2020

The Pólya urn is the paradigmatic example of a reinforced stochastic process. It leads to a random (non degenerated) time-limit. The Friedman urn is a natural generalization whose a.s. time-limit is not random anymore. In this work, in the stream of previous recent works, we introduce a new family of (finite) systems of reinforced stochastic processes, interacting through an additional collective reinforcement of mean field type. The two reinforcement rules strengths (one componentwise, one collective) are tuned through (possibly) different rates n −γ. In the case the reinforcement rates are like n −1 , these reinforcements are of Pólya or Friedman type as in urn contexts and may thus lead …

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Interacting random systemssynchronisation[MATH] Mathematics [math]Almost sure convergenceReinforced stochastic processes[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]62P35Secondary 62L2060F05Central limit theoremsFluctuationsFluctuations MSC2010 Classification Primary 60K3560F15[MATH]Mathematics [math]stable convergence
researchProduct