Search results for "62P30"
showing 2 items of 2 documents
A Bayesian Multilevel Random-Effects Model for Estimating Noise in Image Sensors
2020
Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parame…
General framework for testing Poisson-Voronoi assumption for real microstructures
2020
Modeling microstructures is an interesting problem not just in Materials Science but also in Mathematics and Statistics. The most basic model for steel microstructure is the Poisson-Voronoi diagram. It has mathematically attractive properties and it has been used in the approximation of single phase steel microstructures. The aim of this paper is to develop methods that can be used to test whether a real steel microstructure can be approximated by such a model. Therefore, a general framework for testing the Poisson-Voronoi assumption based on images of 2D sections of real metals is set out. Following two different approaches, according to the use or not of periodic boundary conditions, thre…