Search results for "65N75"
showing 2 items of 2 documents
From Feynman–Kac formulae to numerical stochastic homogenization in electrical impedance tomography
2016
In this paper, we use the theory of symmetric Dirichlet forms to derive Feynman–Kac formulae for the forward problem of electrical impedance tomography with possibly anisotropic, merely measurable conductivities corresponding to different electrode models on bounded Lipschitz domains. Subsequently, we employ these Feynman–Kac formulae to rigorously justify stochastic homogenization in the case of a stochastic boundary value problem arising from an inverse anomaly detection problem. Motivated by this theoretical result, we prove an estimate for the speed of convergence of the projected mean-square displacement of the underlying process which may serve as the theoretical foundation for the de…
Exact simulation of first exit times for one-dimensional diffusion processes
2019
International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …