Search results for "65m06"

showing 3 items of 3 documents

Stochastic Galerkin method for cloud simulation

2018

AbstractWe develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results…

010504 meteorology & atmospheric sciencesComputer scienceuncertainty quantificationQC1-999cloud dynamicsFOS: Physical sciencesCloud simulation65m15010103 numerical & computational mathematics01 natural sciencespattern formationMeteorology. ClimatologyFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsStochastic galerkin0105 earth and related environmental sciencesnavier-stokes equationsPhysics65m2565l05Numerical Analysis (math.NA)65m06Computational Physics (physics.comp-ph)stochastic galerkin method35l4535l65finite volume schemesQC851-999Physics - Computational Physicsimex time discretization
researchProduct

Cell-average WENO with progressive order of accuracy close to discontinuities with applications to signal processing

2020

In this paper we translate to the cell-average setting the algorithm for the point-value discretization presented in S. Amat, J. Ruiz, C.-W. Shu, D. F. Y\'a\~nez, A new WENO-2r algorithm with progressive order of accuracy close to discontinuities, submitted to SIAM J. Numer. Anal.. This new strategy tries to improve the results of WENO-($2r-1$) algorithm close to the singularities, resulting in an optimal order of accuracy at these zones. The main idea is to modify the optimal weights so that they have a nonlinear expression that depends on the position of the discontinuities. In this paper we study the application of the new algorithm to signal processing using Harten's multiresolution. Se…

Signal processing0209 industrial biotechnologyDiscretizationComputer science02 engineering and technologyClassification of discontinuitiesCell-averageMathematics::Numerical Analysis020901 industrial engineering & automationImproved adaption to discontinuitiesNew optimal weightsPosition (vector)Multiresolution schemesFOS: Mathematics0202 electrical engineering electronic engineering information engineeringMathematics - Numerical AnalysisSignal processingWENO65D05 65D17 65M06 65N0612 MatemáticasApplied MathematicsOrder of accuracyMatemática Aplicada020206 networking & telecommunicationsNumerical Analysis (math.NA)Expression (mathematics)Computational MathematicsNonlinear systemGravitational singularityAlgorithmApplied Mathematics and Computation
researchProduct

Hybrid WENO schemes for polydisperse sedimentation models

2015

International audience; Polydisperse sedimentation models can be described by a strongly coupled system of conservation laws for the concentration of each species of solids. Typical solutions for the sedimentation model considered for batch settling in a column include stationary kinematic shocks separating layers of sediment of different composition. This phenomenon, known as segregation of species, is a specially demanding task for numerical simulation due to the need of accurate numerical simulations. Very high-order accurate solutions can be constructed by incorporating characteristic information, available due to the hyperbolicity analysis made in Donat and Mulet [A secular equation fo…

Geometry010103 numerical & computational mathematics65M0601 natural sciences[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph]symbols.namesake35L65finite difference WENO schemesApplied mathematicspolydisperse sedimentation0101 mathematicsMathematicsConservation lawPartial differential equationComputer simulationApplied Mathematics76T20Finite differenceComputer Science Applications010101 applied mathematicsComputational Theory and MathematicsFlow (mathematics)Jacobian matrix and determinantsymbolsGravitational singularityConstant (mathematics)component-wise schemes
researchProduct