Search results for "81D07"
showing 3 items of 3 documents
Commutator anomalies and the Fock bundle
1990
We show that the anomalous finite gauge transformations can be realized as linear operators acting on sections of the bundle of fermionic Fock spaces parametrized by vector potentials, and more generally, by splittings of the fermionic one-particle space into a pair of complementary subspaces. On the Lie algebra level we show that the construction leads to the standard formula for the relevant commutator anomalies.
Formal Group Laws for Affine Kac-Moody groups and group quantization
1987
We describe a method for obtaining Formal Group Laws from the structure constants of Affine Kac-Moody groups and then apply a group manifold quantization procedure which permits construction of physical representations by using only canonical structures on the group. As an intermediate step we get an explicit expression for two-cocycles on Loop Groups. The programme is applied to the AffineSU(2) group.
Algebraic quantization on a group and nonabelian constraints
1989
A generalization of a previous group manifold quantization formalism is proposed. In the new version the differential structure is circumvented, so that discrete transformations in the group are allowed, and a nonabelian group replaces the ordinary (central)U(1) subgroup of the Heisenberg-Weyl-like quantum group. As an example of the former we obtain the wave functions associated with the system of two identical particles, and the latter modification is used to account for the Virasoro constraints in string theory.