Search results for "81R50"

showing 3 items of 3 documents

Invariant Markov semigroups on quantum homogeneous spaces

2019

Invariance properties of linear functionals and linear maps on algebras of functions on quantum homogeneous spaces are studied, in particular for the special case of expected coideal *-subalgebras. Several one-to-one correspondences between such invariant functionals are established. Adding a positivity condition, this yields one-to-one correspondences of invariant quantum Markov semigroups acting on expected coideal *-subalgebras and certain convolution semigroups of states on the underlying compact quantum group. This gives an approach to classifying invariant quantum Markov semigroups on these quantum homogeneous spaces. The generators of these semigroups are viewed as Laplace operators …

Pure mathematicsAlgebra and Number TheoryLaplace transformMarkov chainMathematics::Operator AlgebrasProbability (math.PR)[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA]Mathematics - Operator Algebras46L53 17B37 17B81 46L65 60B15 60G51 81R50Invariant (physics)[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]ConvolutionFOS: MathematicsGeometry and TopologyCompact quantum groupOperator Algebras (math.OA)QuantumLaplace operatorMathematical PhysicsEigenvalues and eigenvectorsMathematics - ProbabilityMathematics
researchProduct

The Reasonable Effectiveness of Mathematical Deformation Theory in Physics

2019

This is a brief reminder, with extensions, from a different angle and for a less specialized audience, of my presentation at WGMP32 in July 2013, to which I refer for more details on the topics hinted at in the title, mainly deformation theory applied to quantization and symmetries (of elementary particles).

PhysicsHigh Energy Physics - TheoryDark matterDeformation theoryFOS: Physical sciencesElementary particleMathematical Physics (math-ph)[MATH] Mathematics [math]16. Peace & justiceTheoretical physicsQuantization (physics)53D55 81R50 17B37 53Z05 81S10 81V25 83C57High Energy Physics - Theory (hep-th)Homogeneous spaceAnti-de Sitter space[MATH]Mathematics [math]Mathematical Physics
researchProduct

The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations

1994

A notion of well-behaved Hopf algebra is introduced; reflexivity (for strong duality) between Hopf algebras of Drinfeld-type and their duals, algebras of coefficients of compact semi-simple groups, is proved. A hidden classical group structure is clearly indicated for all generic models of quantum groups. Moyal-product-like deformations are naturally found for all FRT-models on coefficients andC∞-functions. Strong rigidity (H bi 2 ={0}) under deformations in the category of bialgebras is proved and consequences are deduced.

Classical groupPure mathematicsQuantum groupDeformation theoryLie groupStatistical and Nonlinear PhysicsHopf algebra17B37Algebra81R50Compact groupMathematics::Quantum AlgebraStrong dualityDual polyhedron16W30Mathematical PhysicsMathematics
researchProduct