Search results for "8c"
showing 10 items of 34 documents
Polynomial functors and polynomial monads
2009
We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.
Nowhere differentiable intrinsic Lipschitz graphs
2021
We construct intrinsic Lipschitz graphs in Carnot groups with the property that, at every point, there exist infinitely many different blow-up limits, none of which is a homogeneous subgroup. This provides counterexamples to a Rademacher theorem for intrinsic Lipschitz graphs.
On Pseudofunctors Sending Groups to 2-Groups
2023
For a category B with finite products, we first characterize pseudofunctors from B to Cat whose corresponding opfibration is cartesian monoidal. Among those, we then characterize the ones which extend to pseudofunctors from internal groups to 2-groups. If B is additive, this is the case precisely when the corresponding opfibration has groupoidal fibres.
Trombosi portale mesenterica idiopatica in paziente con doppia mutazione eterozigote del gene C677T e del gene A1298C della MTHFR
2002
CCDC 262066: Experimental Crystal Structure Determination
2006
Related Article: G.Stajer, A.E.Szabo, G.Turos, P.Sohar, R.Sillanpaa|2005|Eur.J.Org.Chem.|2005|4154|doi:10.1002/ejoc.200500155
CCDC 1047644: Experimental Crystal Structure Determination
2017
Related Article: Michael Mirion, Lars Andernach, Caroline Stobe, Joaquin Barjau, Dieter Schollmeyer, Till Opatz, Arne Lützen, Siegfried R. Waldvogel|2015|Eur.J.Org.Chem.|2015|4876|doi:10.1002/ejoc.201500600
CCDC 1047645: Experimental Crystal Structure Determination
2017
Related Article: Michael Mirion, Lars Andernach, Caroline Stobe, Joaquin Barjau, Dieter Schollmeyer, Till Opatz, Arne Lützen, Siegfried R. Waldvogel|2015|Eur.J.Org.Chem.|2015|4876|doi:10.1002/ejoc.201500600
CCDC 1047647: Experimental Crystal Structure Determination
2017
Related Article: Michael Mirion, Lars Andernach, Caroline Stobe, Joaquin Barjau, Dieter Schollmeyer, Till Opatz, Arne Lützen, Siegfried R. Waldvogel|2015|Eur.J.Org.Chem.|2015|4876|doi:10.1002/ejoc.201500600
CCDC 1047646: Experimental Crystal Structure Determination
2017
Related Article: Michael Mirion, Lars Andernach, Caroline Stobe, Joaquin Barjau, Dieter Schollmeyer, Till Opatz, Arne Lützen, Siegfried R. Waldvogel|2015|Eur.J.Org.Chem.|2015|4876|doi:10.1002/ejoc.201500600
On Pietsch measures for summing operators and dominated polynomials
2012
We relate the injectivity of the canonical map from $C(B_{E'})$ to $L_p(\mu)$, where $\mu$ is a regular Borel probability measure on the closed unit ball $B_{E'}$ of the dual $E'$ of a Banach space $E$ endowed with the weak* topology, to the existence of injective $p$-summing linear operators/$p$-dominated homogeneous polynomials defined on $E$ having $\mu$ as a Pietsch measure. As an application we fill the gap in the proofs of some results of concerning Pietsch-type factorization of dominated polynomials.