Search results for "A. Fibre"
showing 10 items of 78 documents
Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. Polypropylene)
2014
Nowadays the tendency to realize environment-friendly products is becoming more widespread to ensure sustainable and smart development. The synthetic fibres, frequently used, are harmful to the environment because they are non-degradable and non-renewable. Their use has resulted in an increase of oil consumption. Therefore, the possibility of replacing them with natural fibres becomes increasingly concrete confirmed by the researches and investigations carried out. In this work three lime based plasters were prepared and analysed to evaluate the influence on their performance of different fibres used as reinforcement. In particular each plaster was realised by adding to the mortar the same …
A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites
2012
Experimental investigations on flax and glass fabrics reinforced epoxy specimens, i.e. FFRE and GFRE, submitted to fatigue tests are presented in this paper. Samples having [0/90]3S and [±45]3S stacking sequences, with similar fibre volume fractions have been tested under tension–tension fatigue loading. The specific stress-number of cycles to failure (S–N) curves, show that for the [0/90]3S specimens, FFRE have lower fatigue endurance than GFRE, but the [±45]3S FFRE specimens offer better specific fatigue endurance than similar GFRE, in the studied life range (<2 × 10^6). Overall, the three-stage stiffness degradation is observed in all cases except for [0/90]3S FFRE specimens, which prese…
Dispersion managed self-similar parabolic pulses
2008
International audience; We describe the propagation of a parabolic self-similar pulse in an anomalous dispersive nonlinear fibre. Given the capacity of a linearly chirped parabolic pulse to retain its typical shape over a short propagation distance, we introduce the concept of dispersion managed self-similar pulses and outline potential benefits in terms of spectral broadening enhancement.
Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation
2016
International audience; We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fibre. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters.
Group birefringence cancellation in highly birefringent photonic crystal fibre at telecommunication wavelengths
2010
International audience; The spectral dependence of the group modal birefringence in a highly birefringent nonlinear photonic crystal fibre is studied both numerically and experimentally. The sign inversion and the cancellation of the group modal birefringence in the telecommunication window is demonstrated. Two simple experimental techniques are used to evaluate the wavelength of zero polarisation mode dispersion. The experimental results are in excellent agreement with numerical calculations based on vectorial beam propagation method simulations.
Designing a photonic crystal fibre with flattened chromatic dispersion
1999
Using a full-vector modal method, the authors have identified a region of nearly zero flattened chromatic dispersion in a specially designed photonic crystal fibre. The approach permits an accurate control of the dispersion features of these fibres in terms of their structural parameters.
Natural Fibres and Their Composites.
2020
Due to several promising properties, such as their low density and specific properties, low price, easy processing, health advantages, renewability and recyclability, increasing attention was paid in the last years to natural fibres as alternatives to synthetic counterparts for the reinforcement of polymeric based composites [...]
Relevant factors for the eco-design of polylactide/sisal biocomposites to control biodegradation in soil in an end-of-life scenario
2017
[EN] The eco-design considers the factors to prepare biocomposites under an end-of-life scenario. PLA/sisal biocomposites were obtained from amorphous polylactide and sisal loadings of 10, 20 and 30 wt% with and without coupling agent, and subjected to biodegradation in soil according to standard IS0846. Mass loss, differential scanning calorimetry and size-exclusion chromatography were used for monitoring biodegradation. A statistical factorial analysis based on the molar mass M-n, and crystallinity degree X-c pointed out the relevance and interaction of amount of fibre and use of coupling agent with the time of burial in soil., During the preparation of biocomposites, chain scission provo…
Strength distribution of elementary flax fibres
2005
Abstract Flax fibres, along with a number of other natural fibres, are being considered as an environmentally friendly alternative of synthetic fibres in fibre-reinforced polymer composites. A common feature of natural fibres is a much higher variability of mechanical properties. This necessitates study of the flax fibre strength distribution and efficient experimental methods for its determination. Elementary flax fibres of different gauge lengths are tested by single fibre tension in order to obtain the stress–strain response and strength and failure strain distributions. The applicability of single fibre fragmentation test for flax fibre failure strain and strength characterization is co…
Mechanical Behaviour of a Green Sandwich Made of Flax Reinforced Polymer Facings and Cork Core
2015
Abstract This work investigates the flexural behavior of a composite sandwich made of flax fibers reinforced skin facings and an agglomerated cork core, to be employed as an eco-friendly solution for the making of structural components of small sailing boats. An experimental mechanical characterization of the strength and stiffness flexural behavior of the proposed sandwich is carried out, providing a comparison of performances from three implemented assembling techniques: hand-lay-up, vacuum bagging and resin infusion. Sandwich beams have been tested under three point bending (TPB) at various span lengths. A procedure is also proposed and implemented to consider the potential influence of …