Search results for "ABSORPTION-BANDS"

showing 2 items of 2 documents

Compensation of Oxygen Transmittance Effects for Proximal Sensing Retrieval of Canopy–Leaving Sun–Induced Chlorophyll Fluorescence

2018

Estimates of Sun–Induced vegetation chlorophyll Fluorescence (SIF) using remote sensing techniques are commonly determined by exploiting solar and/or telluric absorption features. When SIF is retrieved in the strong oxygen (O 2 ) absorption features, atmospheric effects must always be compensated. Whereas correction of atmospheric effects is a standard airborne or satellite data processing step, there is no consensus regarding whether it is required for SIF proximal–sensing measurements nor what is the best strategy to be followed. Thus, by using simulated data, this work provides a comprehensive analysis about how atmospheric effects impact SIF estimations on proximal sensing, regarding: (…

1171 GeosciencesFLUXspectral fitting method (SFM)AIRBORNE010504 meteorology & atmospheric sciencesScience0211 other engineering and technologiesFlux02 engineering and technologyfraunhofer line discriminator (FLD)Surface pressure01 natural sciencesO2 transmittanceAtmospheric radiative transfer codesatmospheric pressureFIELD SPECTROSCOPYTransmittanceAstrophysics::Solar and Stellar AstrophysicsSPACESpectral resolutionAbsorption (electromagnetic radiation)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingproximal sensing4112 Forestrysun-induced chlorophyll fluorescence (SIF)Atmospheric pressureSTRESS DETECTIONPHOTOSYNTHESISQAtmospheric correctionO-2 transmittanceair temperatureREFLECTANCEsun–induced chlorophyll fluorescence (SIF)Physics::Space Physicssun–induced chlorophyll fluorescence (SIF); proximal sensing; O<sub>2</sub> transmittance; fraunhofer line discriminator (FLD); spectral fitting method (SFM); air temperature; atmospheric pressureLUMINESCENCEGeneral Earth and Planetary SciencesEnvironmental scienceABSORPTION-BANDSAstrophysics::Earth and Planetary AstrophysicsVEGETATIONRemote Sensing
researchProduct

Oxidative C-N fusion of pyridinyl-substituted porphyrins.

2018

International audience; The mild (electro) chemical oxidation of pyridin-2-ylthio-meso substituted Ni(II) porphyrins affords C-N fused cationic and dicationic pyridinium-based derivatives. These porphyrins are fully characterized and the molecular structure of one of them was confirmed by X-ray crystallography. A mechanism for the intramolecular oxidative C-N coupling is proposed based on theoretical calculations and cyclic voltammetry analyses.

Oxidative phosphorylation010402 general chemistry01 natural sciencesMedicinal chemistryCatalysischemistry.chemical_compound[CHIM.ANAL]Chemical Sciences/Analytical chemistryMaterials Chemistrypolycyclic compoundsMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistrydimers fused porphyrin absorption-bands electrosynthesis displacement arrays anthracenes snar tapes pi-extended porphyrinsFusion010405 organic chemistryChemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryMetals and AlloysCationic polymerizationGeneral Chemistry[CHIM.MATE]Chemical Sciences/Material chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIntramolecular forceCeramics and CompositesPyridiniumCyclic voltammetryChemical communications (Cambridge, England)
researchProduct