Search results for "ACCLIMATION"

showing 10 items of 32 documents

Survival and gene expression under different temperature and humidity regimes in ants

2017

Short term variation in environmental conditions requires individuals to adapt via changes in behavior and/or physiology. In particular variation in temperature and humidity are common, and the physiological adaptation to changes in temperature and humidity often involves alterations in gene expression, in particular that of heat-shock proteins. However, not only traits involved in the resistance to environmental stresses, but also other traits, such as immune defenses, may be influenced indirectly by changes in temperature and humidity. Here we investigated the response of the ant F. exsecta to two temperature regimes (20 degrees C & 25 degrees C), and two humidity regimes (50% & 75%), for…

0106 biological sciences0301 basic medicineAtmospheric ScienceympäristöAcclimatizationGene Expressionlcsh:MedicinemuutosALFALFA LEAFCUTTING BEEBiochemistryImmune Receptors01 natural sciencesEndocrinologyACCLIMATIONmuurahaisetGene expressionMedicine and Health SciencesIMMUNE-RESPONSEInsulinTRANSCRIPTIONgeeniekspressiolcsh:SciencePOPULATIONHeat-Shock ProteinsProtein MetabolismsopeutuminenPrincipal Component Analysiseducation.field_of_studyImmune System ProteinsMultidisciplinaryBehavior AnimalEcologyolosuhteetTemperaturefood and beveragesANThumanitiesInsectsimmuunijärjestelmä1181 Ecology evolutionary biologyPhysical SciencesMEGACHILE-ROTUNDATAlämpötilaympäristönmuutoksetResearch ArticleNutrient and Storage ProteinsSignal TransductionArthropodaImmunologyPopulationZoologyBiology010603 evolutionary biologyAcclimatization03 medical and health sciencesMeteorologyTwo temperatureStress PhysiologicalGeneticsAnimalseducationGeneProportional Hazards ModelsDiabetic EndocrinologyAntsBEAUVERIA-BASSIANAGene Expression Profilinglcsh:ROrganismshumidityBiology and Life SciencesProteinsHumiditytemperatureHumidityEigenvaluesCell BiologyDESICCATIONInvertebratesHymenopteraHormonesMetabolismAlgebra030104 developmental biologyGene Expression RegulationLinear AlgebraDROSOPHILA-MELANOGASTERkosteusEarth Sciencesgene expressionta1181lcsh:QFormica exsectaDesiccationRESISTANCEMathematics
researchProduct

2016

Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos), in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters…

0106 biological sciences0301 basic medicineMultidisciplinaryfungiInsect physiologyBiologybiology.organism_classification010603 evolutionary biology01 natural sciencesAcclimatizationCell biologyDrosophila virilis03 medical and health sciences030104 developmental biologyBotanyCold acclimationmedicineCold sensitivityDrosophila melanogastermedicine.symptomExtreme ColdOverwinteringPLOS ONE
researchProduct

How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile

2017

1.Organisms from temperate zones are exposed to seasonal changes and must be able to cope with a wide range of climatic conditions. Especially ectotherms, including insects, are at risk to desiccate under dry and warm conditions, the more so given the changing climate. 2.To adjust to current conditions, organisms acclimate through changes in physiology, morphology and/or behaviour. Insects protect themselves against desiccation through a layer of cuticular hydrocarbons (CHC) on their body surface. Hence, acclimation may also affect the CHC profile, changing their waterproofing capacity under different climatic conditions. 3.Here, we investigated the acclimation response of two Temnothorax a…

0106 biological sciences0301 basic medicinePhenotypic plasticityTemnothoraxbiologyEcologyRange (biology)biology.organism_classification010603 evolutionary biology01 natural sciencesAcclimatizationBeneficial acclimation hypothesis03 medical and health sciences030104 developmental biologyEctothermTemperate climateDesiccationEcology Evolution Behavior and SystematicsFunctional Ecology
researchProduct

2021

Abstract Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly co…

0106 biological sciences0301 basic medicinephotoperiodismEntomologyNatural selectionbiologyEcologyCircadian clockGeneral Medicine15. Life on landbiology.organism_classification010603 evolutionary biology01 natural sciencesAcclimatization03 medical and health sciences030104 developmental biology13. Climate actionCold acclimationAdaptationDrosophilaBMC Ecology and Evolution
researchProduct

Rapid adaptation to high temperatures in Chironomus riparius

2018

AbstractEffects of seasonal or daily temperature variation on fitness and physiology of ectothermic organisms and their ways to cope with such variations have been widely studied. However, the way multivoltines organisms cope with temperature variations from a generation to another is still not well understood and complex to identify. The aim of this study is to investigate whether the multivoltine midgeChironomus ripariusMeigen (1803) responds mainly via acclimation as predicted by current theories, or if rapid genetic adaptation is involved. To investigate this issue, a common garden approach has been applied. A mix of larvae from five European populations was raised in the laboratory at …

0106 biological sciences0301 basic medicineved/biology.organism_classification_rank.speciesZoologyacclimation010603 evolutionary biology01 natural sciencesChironomidaeAcclimatizationChironomidaeChironomidae ; climate ; acclimation ; temperature adaptation ; developmental temperature ; ectotherm03 medical and health sciencesddc:590temperature adaptationdevelopmental temperatureclimateectothermEcology Evolution Behavior and SystematicsNature and Landscape ConservationOriginal ResearchChironomus ripariusPhenotypic plasticityEcologybiologyved/biologyEcologyMortality rateVoltinismbiology.organism_classificationBiting030104 developmental biologyEctothermMidgeAdaptation
researchProduct

Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille

2021

AbstractBackgroundTracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold…

0106 biological sciencesCircadian clockInsect01 natural scienceskylmänkestävyysCCRTQH540-549.5vuorokausirytmimedia_commonsopeutuminenphotoperiodism0303 health sciencesluonnonvalintaNatural selectionLatitudeEcologyEcologylatitudeCold TemperatureBody colourDrosophilaCuesResearch ArticleRNA interference (RNAi)RNA-interferenssimahlakärpäsetympäristötekijätEvolutionmedia_common.quotation_subjectGrowing seasonBiology010603 evolutionary biologyLatitudebody weight03 medical and health sciencesmorfologiabioclimatic variablesDrosophila montanaBioclimatic variablesCircadian ClocksCold acclimationQH359-425AnimalsCircadian rhythmCTmin030304 developmental biologygeenitDrosophila flavomontanafungibody colour15. Life on landBody weight13. Climate actionNorth AmericaBMC Ecology and Evolution
researchProduct

Unravelling the determinants of freezing tolerance in Medicago truncatula: a first step towards improving the response of crop legumes to freezing st…

2020

International audience; Freezing is a major environmental limitation that affects biomass and seed productivity in a large number of crop species including legumes. Medicago truncatula is a model molecular‐genetic system for legume biology. A strategy to decipher freezing tolerance after a cold acclimation period in M. truncatula was developed using a quantitative genetic approach. Three main quantitative trait loci (QTL) with additive effects for freezing damage were detected on chromosomes 1, 4, and 6 using a recombinant inbred line population derived from a cross between the freezing‐tolerant accession F83005‐5 and the freezing‐sensitive accession DZA045‐5. The QTL on chromosome 6, named…

0106 biological sciences[SDE] Environmental SciencesCandidate genequantitative trait loci (QTL)[SDV]Life Sciences [q-bio]PopulationQuantitative trait locus01 natural sciences03 medical and health sciencesMedicago truncatulaCold acclimation[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal BiologyCopy-number variationCBF/DREB1 geneseducationGeneComputingMilieux_MISCELLANEOUScool-season crop legumes030304 developmental biologySyntenyGenetics0303 health scienceseducation.field_of_studybiologysyntenyfood and beveragesbiology.organism_classificationMedicago truncatula[SDV] Life Sciences [q-bio]freezing stress[SDE]Environmental Sciencescandidate genes010606 plant biology & botany
researchProduct

Influence of Altered Microbes on Soil Organic Carbon Availability in Karst Agricultural Soils Contaminated by Pb-Zn Tailings.

2018

Soil organic carbon (SOC) availability is determined via a complex bio-mediated process, and Pb-Zn tailings are toxic to the soil microbes that are involved in this process. Here, Pb-Zn-tailings- contaminated karst soils with different levels (paddy field > corn field > citrus field > control group) were collected to explore the intrinsic relationship between Pb-Zn tailings and microbes due to the limited microbial abundance in these soils. The SOC concentration in the paddy fields is the highest. However, based on the soil microbial diversity and sole-carbon-source utilization profiles, the rate of SOC availability, McIntosh index, Shannon-Wiener diversity index, Simpson’s diversi…

0301 basic medicineMicrobiology (medical)Pb-Zn tailingsbiologylcsh:QR1-502Soil carbonbiology.organism_classificationMicrobiologyTailingskarst surface soillcsh:MicrobiologyActinobacteriasoil organic carbon03 medical and health sciencesDiversity index030104 developmental biologyAgronomylong-term acclimationSoil waterPaddy fieldEnvironmental scienceProteobacteriamicrobial communityAcidobacteriaFrontiers in microbiology
researchProduct

A systems-wide understanding of photosynthetic acclimation in algae and higher plants

2017

The ability of phototrophs to colonise different environments relies on robust protection against oxidative stress, a critical requirement for the successful evolutionary transition from water to land. Photosynthetic organisms have developed numerous strategies to adapt their photosynthetic apparatus to changing light conditions in order to optimise their photosynthetic yield, which is crucial for life on Earth to exist. Photosynthetic acclimation is an excellent example of the complexity of biological systems, where highly diverse processes, ranging from electron excitation over protein protonation to enzymatic processes coupling ion gradients with biosynthetic activity, interact on drasti…

0301 basic medicine[SDV.BIO]Life Sciences [q-bio]/BiotechnologyPhysiologyAcclimatizationContext (language use)PhD traininginterdisciplinary trainingPlant Science: Biochemistry biophysics & molecular biology [F05] [Life sciences]BiologyacclimationPhotosynthesisAcclimatizationModels Biologicalmodelling03 medical and health sciencesAlgaeChlorophytaapplication industrielle[SDV.BV]Life Sciences [q-bio]/Vegetal Biologymathematical modellingPhotosynthesis: Biochimie biophysique & biologie moléculaire [F05] [Sciences du vivant]biodiversitymodélisationmicro-alguePhototrophphotosynthetic systemEcologyNon-photochemical quenchingSystems Biologyacclimatation photosynthétiquephotosynthetic optimisationPlanktonPlantsanalyse rétrospectivebiology.organism_classificationindustrial applicationEuropean Training Network030104 developmental biologyAcclimation; European Training Network; PhD training; biodiversity; interdisciplinary training; mathematical modelling; microalgal cultivation; non-photochemical quenching; photosynthetic optimisationPhotosynthetic acclimationadaptation à la lumièremicroalgal cultivationappareil photosynthétiqueBiochemical engineeringnon-photochemical quenching
researchProduct

Integration of polyamins in the cold acclimation response

2011

8 páginas, 1 figura, 3 tablas -- PAGS nros. 31-38

AcclimatizationPlant geneticsArabidopsisCold acclimationPlant ScienceBiologyModels BiologicalTranscriptomechemistry.chemical_compoundAbscisic acidMetabolomicsGene Expression Regulation PlantBotanyGeneticsCold acclimationPolyaminesAbscisic acidRegulation of gene expressionEcologyPlant physiologyGeneral MedicineCold TemperatureArginine decarboxylasechemistryAdaptationAgronomy and Crop Science
researchProduct