Search results for "ACCRETION"

showing 10 items of 385 documents

Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart

2020

We study the impact of gas accretion on the orbital evolution of black-hole binaries initially at large separation in the band of the planned Laser Interferometer Space Antenna (LISA). We focus on two sources: (i)~stellar-origin black-hole binaries~(SOBHBs) that can migrate from the LISA band to the band of ground-based gravitational-wave observatories within weeks/months; and (ii) intermediate-mass black-hole binaries~(IMBHBs) in the LISA band only. Because of the large number of observable gravitational-wave cycles, the phase evolution of these systems needs to be modeled to great accuracy to avoid biasing the estimation of the source parameters. Accretion affects the gravitational-wave p…

010504 meteorology & atmospheric sciencesAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)Observableastro-ph.HE; astro-ph.HE; General Relativity and Quantum Cosmologygas: accretionblack holes gravitational wavesobservatoryInterferometrygravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenainterferometermedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgravitational radiation: direct detectionelectromagnetic field: productionGeneral Relativity and Quantum Cosmologybinary: coalescencestatistical analysisSettore FIS/05 - Astronomia e Astrofisicagravitation: weak field0103 physical sciencesnumerical calculationsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLISAGravitational wavegravitational radiationOrder (ring theory)black hole: accretionAstronomy and Astrophysicsblack holesgravitational radiation detectorRedshiftBlack holeblack hole: binarySpace and Planetary ScienceSkygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray: detectorThe Astrophysical Journal
researchProduct

High Resolution X-ray Spectroscopy of T Tauri Stars in the Taurus-Auriga Complex

2006

Differences have been reported between the X-ray emission of accreting and non-accreting stars. Some observations have suggested that accretion shocks could be responsible for part of the X-ray emission in Classical T Tauri stars (CTTS). We present high-resolution X-ray spectroscopy of nine pre-main sequence stars in order to test the proposed spectroscopic differences between accreting and non-accreting pre-main sequence stars. We use X-ray spectroscopy from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. We interpret the spectra using optically thin thermal models with variable abundances, together with an absorption column density. For BP Tau and AB Aur we deriv…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSpectral line0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsAURIGAStar formationAstrophysics (astro-ph)Astronomy and AstrophysicsAbundance of the chemical elementsAccretion (astrophysics)StarsT Tauri star13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMain sequence
researchProduct

Subarcsecond Location of IGR J17480-2446 with Rossi XTE

2012

On 2010 October 13, the X-ray astronomical satellite Rossi XTE, during the observation of the newly discovered accretion powered X-ray pulsar IGR J17480--2446, detected a lunar occultation of the source. From knowledge of lunar topography and Earth, Moon, and spacecraft ephemeris at the epoch of the event, we determined the source position with an accuracy of 40 mas (1{\sigma} c.l.), which is interesting, given the very poor imaging capabilities of RXTE (\sim 1\circ). For the first time, using a non-imaging X-ray observatory, the position of an X-ray source with a subarcsecond accuracy is derived, demonstrating the neat capabilities of a technique that can be fruitfully applied to current a…

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEphemeris01 natural sciencesOccultationSettore FIS/05 - Astronomia E AstrofisicaPulsarObservatory0103 physical sciences010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyAstronomy and AstrophysicsAccretion (astrophysics)general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binaries [Moon pulsars]Moon pulsars: general pulsars: individual: IGR J17480-2446 stars: neutron X-rays: binariesSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenabusiness
researchProduct

Magnetic shuffling of coronal downdrafts

2017

Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have been recently addressed from an observation after a solar eruption. We study the possible back-effect of the magnetic field on the propagation of confined flows. We compare two 3D MHD simulations of dense supersonic plasma blobs downfalling along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned to the magnetic field and the field is weaker. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merged by the chaotic shuffling of …

010504 meteorology & atmospheric sciencesField lineAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsSun:corona01 natural sciencesAlfvén waveSettore FIS/05 - Astronomia E AstrofisicaPhysics::Plasma Physics0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSolar flareAstronomy and AstrophysicsSun:activityPlasmaMagnetic fluxAccretion (astrophysics)Magnetic fieldAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamicsmagnetohydrodynamics
researchProduct

A giant exoplanet orbiting a very-low-mass star challenges planet formation models

2019

Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…

010504 meteorology & atmospheric sciencesGas giant530 PhysicsFOS: Physical sciencesMinimum massAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSettore FIS/05 - Astronomia e AstrofisicaPlanet0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsMultidisciplinary520 AstronomyGiant planetAstronomyPlanetary system620 EngineeringAccretion (astrophysics)ExoplanetOrbitAstrophysics - Solar and Stellar Astrophysics13. Climate actionAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary AstrophysicsScience
researchProduct

2021

Intracratonic basins tend to subside much longer than the timescale predicted by thermal relaxation of the lithosphere. Many hypotheses have been suggested to explain their longevity, yet few have been tested using quantitative thermo-mechanical numerical models, which capture the dynamic of the lithosphere. Lithospheric-scale geodynamic modelling preserving the tectono-stratigraphic architecture of these basins is challenging because they display only few kilometres of subsidence over 1000 of km during time periods exceeding 250 Myr. Here we present simulations that are designed to examine the relative role of thermal anomaly, tectonics and heterogeneity of the lithosphere on the dynamics …

010504 meteorology & atmospheric sciencesGeologySubsidenceForcing (mathematics)010502 geochemistry & geophysics01 natural sciencesUnconformityTectonics13. Climate actionLithosphereErosionCompression (geology)Accretion (geology)SeismologyGeology0105 earth and related environmental sciencesBulletin de la Société géologique de France
researchProduct

Deep X-ray view of the Class I YSO Elias 29 with XMM-Newton and NuSTAR

2019

[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band encompassing simultaneously both soft and hard X-rays. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at $\sim6.4$ keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the $\approx 0.15--0.5$ keV range. These values make unrealistic a simple model with a centrally illuminated disk and sug…

010504 meteorology & atmospheric sciencesYoung stellar objectAstrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslaw.inventionSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicseducation010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyStar formationAstronomy and AstrophysicsCoronaAccretion (astrophysics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomenastars:activity–stars:coronae–stars:pre-mainsequence–stars:formation–stars:flareEquivalent widthFlare
researchProduct

First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole

2019

When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux rati…

010504 meteorology & atmospheric sciencesindividual (M87) [galaxies]Event horizonAstronomyblack hole physicsjets [galaxies]galaxies: individualAstrophysicshigh-resolution7. Clean energy01 natural sciencesPhoton sphereGeneral Relativity and Quantum Cosmologyaccretionsagittarius-a-asterisk010303 astronomy & astrophysicsgalactic-centerHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsradio-sourcesaccretion disksGalactic Centergrmhd simulations3. Good healthenergy-distributionsactive [galaxies]AnatomyAstrophysics - High Energy Astrophysical PhenomenaActive galactic nucleusAstrophysics::High Energy Astrophysical Phenomenagalaxies: activeFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgalaxies: individual: M87galaxies: individual (M87)Cell and Developmental BiologyGeneral Relativity and Quantum Cosmology0103 physical sciences(M87)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEvent Horizon TelescopeSupermassive black holeghz vlbi observationsfaraday-rotationAstronomy and Astrophysicsgalaxies: jetsAstrophysics - Astrophysics of GalaxiesBlack holeRotating black holeSpace and Planetary SciencegravitationAstrophysics of Galaxies (astro-ph.GA)advection-dominated accretion[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]ionized-gas
researchProduct

The XMM-Newton Optical Monitor survey of the Taurus molecular cloud

2007

The Optical Monitor (OM) on-board XMM-Newton obtained optical/ultraviolet data for the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST), simultaneously with the X-ray detectors. With the XEST OM data, we aim to study the optical and ultraviolet properties of TMC members, and to do correlative studies between the X-ray and OM light curves. In particular, we aim to determine whether accretion plays a significant role in the optical/ultraviolet and X-ray emissions. The Neupert effect in stellar flares is also investigated. Coordinates, average count rates and magnitudes were extracted from OM images, together with light curves with low time resolution (a few kiloseconds). For a …

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaExtinction (astronomy)FOS: Physical sciencesFluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural scienceslaw.invention[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]law0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesmedia_commonPhysicsMolecular cloudAstrophysics (astro-ph)Astronomy and AstrophysicsLight curveAccretion (astrophysics)Stars[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Space and Planetary ScienceSkyPhysics::Space PhysicsFlare
researchProduct

Structural contacts in subduction complexes and their tectonic significance: the Late Palaeozoic coastal accretionary wedge of central Chile

2007

Understanding the contact between the very low-grade metagreywacke of the Eastern Series and high-pressure metamorphosed schist of the Western Series in the Late Palaeozoic accretionary wedge of central Chile is fundamental for the understanding of the evolution of ancient accretionary wedges. We show the progressive development of structures and finite strain from the least deformed rocks in the eastern part of the Eastern Series of the accretionary wedge to high-pressure schist of the Western Series at the Pacific coast. Upright chevron folds of sedimentary layering are associated with an axial-plane foliation, S1. As the F1 folds became slightly overturned to the west, S1 was folded abou…

010506 paleontologyAccretionary wedgePaleozoicMineralogy010502 geochemistry & geophysics55101 natural sciencesPaleontologyJungpaläozoikumVAE 50014. Life underwaterChile0105 earth and related environmental sciencesVariszisch-herzynische Orogene {Geologie}SubductionSchistChile {Geologie}Geotektonische Entwicklung der Erdkruste {Geologie}GeologyTectonicsShear (geology)38.36AkkretionskeilFoliation (geology)Sedimentary rockVEX 500VAE 812Geology
researchProduct