Search results for "ACCRETION DISKS"

showing 10 items of 91 documents

Tracking the evolution of the accretion flow in MAXI J1820+070 during its hard state with the JED-SAD model

2021

X-ray binaries in outburst typically show two canonical X-ray spectral states, i.e. hard and soft states, in which the physical properties of the accretion flow and of the jet are known to change. Recently, the JED-SAD paradigm has been proposed for black hole X-ray binaries, aimed to address the accretion-ejection interplay in these systems. According to this model, the accretion flow is composed by an outer standard Shakura-Sunyaev disk (SAD) and an inner hot Jet Emitting Disk (JED). The JED produces both the hard X-ray emission, effectively playing the role of the hot corona, and the radio jets. In this paper, we use the JED-SAD model to describe the evolution of the accretion flow in th…

X-rays: AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesX-rays: Accretion disksSpectral lineX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesThick disk010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Accretion (meteorology)010308 nuclear & particles physicsaccretion disksAstronomy and AstrophysicsRadiusX-rays: individuals: MAXI J1820+070CoronaBlack holeISM: jets and outflowsSpace and Planetary ScienceReflection (physics)Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct

Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

2016

We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $\sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $\sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{\odot}$, which assumes a neutron star mass of 1.4 M$_{\odot}$ and a maximum inclination angle of $75^{\…

X-rays: binaries pulsars: general stars: neutron accretion accretion disks binaries: generalMetallicityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsWhite dwarfAstronomy and Astrophysicsbinaries pulsars: general stars: neutron accretion accretion disks binaries: general [X-rays]Orbital periodNeutron starSpace and Planetary ScienceGlobular clusterAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

A Spectral Insight into the Physics of Accreting ms Pulsars

2010

The broadened iron lines observed from accreting compact objects are most easily interpreted in terms of reflection onto the accretion disc of the hard X-ray photons emitted by the central source. In this context, such a broadness is due to the relativistic motion of the reflecting plasma, in the deep gravitational well of the compact object, and can thus serve as a probe of the inner radius of the disc. Here we report about the discovery of such features from a couple of accreting millisecond pulsars, and discuss the constraints which can be derived on the magnetospheric radius.

X-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaline: profileprofiles; X-rays: binaries [accretion accretion disks; line]accretion accretion disk
researchProduct

New view of the corona of classical T Tauri stars: Effects of flaring activity in circumstellar disks

2019

Classical T Tauri stars (CTTSs) are young low-mass stellar objects accreting mass from their circumstellar disks. They are characterized by high levels of coronal activity as revealed by X-ray observations. This activity may affect the disk stability and the circumstellar environment. Here we investigate if an intense coronal activity due to flares occurring close to the accretion disk may perturb the inner disk stability, disrupt the inner part of the disk and, possibly, trigger accretion phenomena with rates comparable with those observed. We model a magnetized protostar surrounded by an accretion disk through 3D magnetohydrodinamic simulations. We explore cases characterized by a dipole …

Young stellar objectStars: flareAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsaccretion accretion disk01 natural sciencesmagnetohydrodynamics (MHD)Settore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesRadiative transferProtostarAstrophysics::Solar and Stellar AstrophysicsStars: coronae010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]accretion disksStellar magnetic fieldAstronomy and Astrophysics[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]CoronaAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsHeat flux13. Climate actionSpace and Planetary ScienceStars: pre-main sequenceAstrophysics::Earth and Planetary Astrophysics
researchProduct

A Hard Look at the Neutron Stars and Accretion Disks in 4U 1636-53, GX 17+2, and 4U 1705-44 with NuStar

2017

We present $\emph{NuSTAR}$ observations of neutron star (NS) low-mass X-ray binaries: 4U 1636-53, GX 17+2, and 4U 1705-44. We observed 4U 1636-53 in the hard state, with an Eddington fraction, $F_{\mathrm{Edd}}$, of 0.01; GX 17+2 and 4U 1705-44 were in the soft state with fractions of 0.57 and 0.10, respectively. Each spectrum shows evidence for a relativistically broadened Fe K$_{\alpha}$ line. Through accretion disk reflection modeling, we constrain the radius of the inner disk in 4U 1636-53 to be $R_{in}=1.03\pm0.03$ ISCO (innermost stable circular orbit) assuming a dimensionless spin parameter $a_{*}=cJ/GM^{2}=0.0$, and $R_{in}=1.08\pm0.06$ ISCO for $a_{*}=0.3$ (errors quoted at 1 $\sig…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]FOS: Physical sciencesAstrophysics01 natural sciencesstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesaccretion accretion disks stars: neutron X-rays: binaries X-rays: individual: 4U 1636-53 GX 17+2 4U 1705-44010303 astronomy & astrophysicsLine (formation)Spin-½PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsEquation of state (cosmology)neutron X-rays: binaries X-rays: individual: 4U 1636-53 GX 17+2 4U 1705-44 [accretion accretion disks stars]accretion disksAstronomy and AstrophysicsRadiusNeutron starReflection (mathematics)Space and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: individualDimensionless quantity
researchProduct

A comprensive spectral-timing study of Ultraluminous X-ray sources

2023

accretionaccretion disksx-ray binariesultraluminous X-ray source
researchProduct

Observatory science with eXTP

2019

Disponible preprint en: arXiv:1812.04023v1 [astro-ph.HE] [v1] Mon, 10 Dec 2018 19:00:52 UTC (4,376 KB)

cataclysmic binariesAstronomyFIELD CAMERAS OBSERVATIONSspace research instruments nuclear astrophysics flare stars accretion and accretion disks mass loss and stellar winds cataclysmic binaries X-ray binaries supernova remnants active galactic nuclei X-ray bursts gamma-ray bursts gravitational wavesGeneral Physics and Astronomygamma-ray burstspace research instrument01 natural sciencesGamma ray burstsObservatoryAccretion and accretion disksAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsgravitational waveaccretion and accretion diskPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)supernova remnants[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]flare starsgamma-ray burstsAstrophysics::Instrumentation and Methods for Astrophysicsaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray bursts; Physics and Astronomy (all)Space research instrumentsX ray burstSupernovaX-ray binariesgravitational wavesaccretion and accretion disksQUIETHigh massX-ray binarieMass loss and stellar windsNuclear astrophysicsGamma-ray burstsspace research instrumentsAstrophysics - High Energy Astrophysical PhenomenaPULSAR-WIND NEBULAEFAST RADIO-BURSTSAstrofísica nuclearActive galactic nucleusTIDAL DISRUPTIONSupernova remnantsAstrophysics::High Energy Astrophysical Phenomenanuclear astrophysicsPolarimetryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsACCRETING NEUTRON-STARSaccretion and accretion disks; active galactic nuclei; cataclysmic binaries; flare stars; gamma-ray bursts; gravitational waves; mass loss and stellar winds; nuclear astrophysics; space research instruments; supernova remnants; X-ray binaries; X-ray burstsGravitational wavesPhysics and Astronomy (all)cataclysmic binarieSettore FIS/05 - Astronomia e AstrofisicaSUPERMASSIVE BLACK-HOLES0103 physical sciences010306 general physicsX-ray burstAstrophysics::Galaxy AstrophysicsCataclysmic binariesActive galactic nucleiflare starAstronomyWhite dwarfFlare starsStarssupernova remnantQB460-466 Astrophysics[SDU]Sciences of the Universe [physics]mass loss and stellar wind:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]active galactic nucleiX-RAYX-ray burstsSupernova remmantsmass loss and stellar windsX ray binaries[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]SEYFERT 1 GALAXYnuclear astrophysic
researchProduct

High-energy monitoring of NGC 4593 II. Broad-band spectral analysis: testing the two-corona model

2019

It is widely believed that the primary X-ray emission of AGN is due to the Comptonisation of optical-UV photons from a hot electron corona, while the origin of the 'soft-excess' is still uncertain and matter of debate. A second Comptonisation component, called warm corona, was therefore proposed to account for the soft-excess, and found in agreement with the optical-UV to X-ray emission of a sample of Seyfert galaxies. In this context, we exploit the broadband XMM-Newton and NuSTAR simultaneous observations of the Seyfert galaxy NGC 4593 to further test the so called "two corona model". The NGC 4593 spectra are well reproduced by the model, from the optical/UV to the hard X-rays. Moreover, …

galaxie [X-rays]High energyPhotonAstrophysics::High Energy Astrophysical Phenomenablack hole physicsgalaxies: activeFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Spectral lineCorona (optical phenomenon)X-rays: binariesaccretionPrimary (astronomy)Seyfert [galaxies]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpectral analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)individuals: (NGC 4593) [X-rays][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsaccretion disks[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsAstronomy and AstrophysicGalaxygalaxies: SeyfertX-rays: galaxiesISM: jets and outflowsSpace and Planetary Science[SDU]Sciences of the Universe [physics]active [galaxies]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: individuals: (NGC 4593)
researchProduct

Broad-band Spectral Evolution of Scorpius X-1 along its Color-Color Diagram

2007

We analyze a large collection of RXTE archive data from April 1997 to August 2003 of the bright X-ray source Scorpius X-1 in order to study the broadband spectral evolution of the source for different values of the inferred mass accretion rate by studying energy spectra from selected regions in the Z-track of its Color-Color Diagram. A two-component model, consisting of a soft thermal component interpreted as thermal emission from an accretion disk and a thermal Comptonization component, is unable to fit the whole 3--200 keV energy spectrum at low accretion rates. Strong residuals in the highest energy band of the spectrum require the addition of a third component that can be fitted with a …

individual (Scorpius X-1); stars : neutron; X-rays : binaries; X-rays : general; X-rays : stars [accretion accretion disks; stars]PhysicsAccretion (meteorology)Component (thermodynamics)Astrophysics::High Energy Astrophysical PhenomenaX-rays : starsDiagramAstrophysics (astro-ph)FOS: Physical sciencesstars : individual (Scorpius X-1)Astronomy and AstrophysicsColor–color diagramPlasmaAstrophysicsAstrophysicsaccretion accretion diskstars : neutronSpectral lineSpace and Planetary ScienceThermalX-rays : binarieElectronic band structureAstrophysics::Galaxy AstrophysicsX-rays : general
researchProduct

Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934

2006

We performed a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we have the possibility to study, for the first time in this class of sources, the spin-up of a millisecond pulsar as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised valu…

neutron; stars : magnetic fields; pulsars : general; pulsars : individual : IGR J00291+5934; X-ray : binaries [accretion accretion disks; stars]X-rays : binariesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion diskAstrophysicsX-ray : binariesBinary pulsarLuminositypulsars : individual : IGR J00291+5934symbols.namesakePulsarMillisecond pulsarAstrophysics::Solar and Stellar Astrophysicspulsars : individual (IGR J00291+5934)PhysicsAccretion (meteorology)general; pulsars : individual (IGR J00291+5934); stars : magnetic fields; stars : neutron; X-rays : binaries [pulsars]Astrophysics (astro-ph)pulsars : generalStatic timing analysisAstronomystars : magnetic fieldAstronomy and Astrophysicsstars : neutronNeutron starSpace and Planetary SciencesymbolsAstrophysics::Earth and Planetary AstrophysicsDoppler effectX-ray pulsar
researchProduct