Search results for "ACCRETION"

showing 10 items of 385 documents

LeMMINGs III. The e-MERLIN legacy survey of the Palomar sample: exploring the origin of nuclear radio emission in active and inactive galaxies throug…

2021

Full list of authors: Baldi, R. D.; Williams, D. R. A.; Beswick, R. J.; McHardy, I.; Dullo, B. T.; Knapen, J. H.; Zanisi, L.; Argo, M. K.; Aalto, S.; Alberdi, A.; Baan, W. A.; Bendo, G. J.; Fenech, D. M.; Green, D. A.; Klöckner, H. -R.; Körding, E.; Maccarone, T. J.; Marcaide, J. M.; Mutie, I.; Panessa, F.; Pérez-Torres, M. A.; Romero-Cañizales, C.; Saikia, D. J.; Saikia, P.; Shankar, F.; Spencer, R. E.; Stevens, I. R.; Uttley, P.; Brinks, E.; Corbel, S.; Martí-Vidal, I.; Mundell, C. G.; Pahari, M.; Ward, M. J.

AstrofísicaActive galactic nucleusAstronomyAstrophysics::High Energy Astrophysical Phenomenanuclei [galaxies]jets [galaxies]Doubly ionized oxygenFOS: Physical sciencesAstrophysicsF500Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRadio continuum: galaxiesLuminosityAstrophysical jetSubatomic Physics0103 physical sciencesAstronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar AstrophysicsConnection (algebraic framework)010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxies: nucleiAstronomia ObservacionsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Galaxies: star formation010308 nuclear & particles physicsAstronomy and AstrophysicsGalaxies: activeAstrophysics - Astrophysics of Galaxiesgalaxies [radio continuum]Accretion (astrophysics)Galaxy[SDU]Sciences of the Universe [physics]Meteorology and Atmospheric SciencesSpace and Planetary ScienceGalaxies: jetsAstrophysics of Galaxies (astro-ph.GA)active [galaxies]Production (computer science)star formation [galaxies]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

2021

Full list of authors: Narayan, Ramesh; Palumbo, Daniel C. M.; Johnson, Michael D.; Gelles, Zachary; Himwich, Elizabeth; Chang, Dominic O.; Ricarte, Angelo; Dexter, Jason; Gammie, Charles F.; Chael, Andrew A.; Event Horizon Telescope Collaboration; Akiyama, Kazunori; Alberdi, Antxon; Alef, Walter; Algaba, Juan Carlos; Anantua, Richard; Asada, Keiichi; Azulay, Rebecca; Baczko, Anne-Kathrin; Ball, David Baloković, Mislav; Barrett, John; Benson, Bradford A.; Bintley, Dan; Blackburn, Lindy; Blundell, Raymond; Boland, Wilfred; Bouman, Katherine L.; Bower, Geoffrey C.; Boyce, Hope; Bremer, Michael; Brinkerink, Christiaan D.; Brissenden, Roger; Britzen, Silke; Broderick, Avery E.; Broguiere, Domini…

AstrofísicaCamps magnèticsAccretion010504 meteorology & atmospheric sciencesAstronomyAstrophysics::High Energy Astrophysical PhenomenaStrong gravitational lensingSynchrotron radiationFOS: Physical sciencesF50001 natural sciencesAstrophysics - high energy astrophysical phenomena994General Relativity and Quantum Cosmology0103 physical sciencesPolarimetrySchwarzschild metric010303 astronomy & astrophysics0105 earth and related environmental sciences162astro-ph.HEEvent Horizon TelescopePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)1278Accretion (meteorology)Black holes14Astronomy and AstrophysicsPolarization (waves)Computational physicsMagnetic fieldBlack holeSpace and Planetary ScienceMagnetic fields14 162 1278 994
researchProduct

EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

2013

Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s -1, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separate…

AstrofísicaCiencias AstronómicasCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsIndividual: Iras 18162-2048 [Stars]//purl.org/becyt/ford/1 [https]Herbig-Haro objects ISM: jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: generalHigh Energy Physics - Phenomenology (hep-ph)Herbig-Haro objectsGeneral [X-Rays]jets and outflows radiation mechanisms: non-thermal stars: individual: IRAS 18162-2048 stars: pre-main sequence X-rays: general [Herbig-Haro objects ISM]Jets And Outflows [Ism]ThermalProtostarstars: individualAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsStar formationX-rayAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]radiation mechanisms: non-thermalHerbig-Haro ObjectsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)Non-Thermal [Radiation Mechanisms]AstronomíaInterstellar mediumHigh Energy Physics - PhenomenologyISM: jets and outflowsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTASThe Astrophysical Journal
researchProduct

Simulating the magnetorotational collapse of supermassive stars: Incorporating gas pressure perturbations and different rotation profiles

2018

Collapsing supermassive stars (SMSs) with masses $M \gtrsim 10^{4-6}M_\odot$ have long been speculated to be the seeds that can grow and become supermassive black holes (SMBHs). We previously performed GRMHD simulations of marginally stable magnetized $\Gamma = 4/3$ polytropes uniformly rotating at the mass-shedding limit to model the direct collapse of SMSs. These configurations are supported entirely by thermal radiation pressure and model SMSs with $M \gtrsim 10^{6}M_\odot$. We found that around $90\%$ of the initial stellar mass forms a spinning black hole (BH) surrounded by a massive, hot, magnetized torus, which eventually launches an incipient jet. Here we perform GRMHD simulations o…

AstrofísicaStellar massAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesArticleGeneral Relativity and Quantum Cosmology0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeAccretion (meteorology)HorizonStellar rotationTorusBlack holeStarsAstronomiaAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The Gaia-ESO Survey: Chromospheric emission, accretion properties, and rotation in gamma Velorum and Chamaeleon

2015

Aims: One of the goals of the Gaia-ESO Survey (GES), which is conducted with FLAMES at the VLT, is the census and the characterization of the low-mass members of very young clusters and associations. We conduct a comparative study of the main properties of the sources belonging to γ Velorum (γ Vel) and Chamaeleon I (Cha I) young associations, focusing on their rotation, chromospheric radiative losses, and accretion. Methods: We used the fundamental parameters (effective temperature, surface gravity, lithium abundance, and radial velocity) delivered by the GES consortium in the first internal data release to select the members of γ Vel and Cha I among the UVES and GIRAFFE spectroscopic obser…

Astrofísicastars: chromospheresAstrophysics::High Energy Astrophysical PhenomenaAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsRotationStars: chromosphereOpen clusters and associations: individual:γVelorumstars: low-massStars: low-maAstrophysics::Solar and Stellar AstrophysicsOpen clusters and associations: individual: Chamaeleon Iopen clusters and associations: individual: γ VelorumQCAstrophysics::Galaxy AstrophysicsQBLine (formation)PhysicsAccretion (meteorology)stars: chromospheres ; stars: low-mass; open clusters and associations: individual: γ VelorumDiagramStars: rotationSpectral densityAstronomy and AstrophysicsAstronomy and AstrophysicStarsDistribution (mathematics)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceChamaeleonStars: pre-main sequenceAstrophysics::Earth and Planetary AstrophysicsOpen clusters and associations: individual: Chamaeleon I; Open clusters and associations: individual:γVelorum; Stars: chromospheres; Stars: low-mass; Stars: pre-main sequence; Stars: rotation
researchProduct

Steady shocks around black holes produced by sub-keplerian flows with negative energy

2005

We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas onto a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since keplerian disks have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. …

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesaccretion accretion disks black hole physics hydrodynamics instabilitiesAstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

2018

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

Astrophysics::High Energy Astrophysical PhenomenaBrown dwarfFOS: Physical sciencesgeneral; stars: neutron; X-rays: binaries; accretion accretion disks [binaries]AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesstars: neutronSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsOrbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsOrbital periodX-rays: binarieNeutron starbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

2015

We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …

Astrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion diskAstrophysics::Solar and Stellar AstrophysicsAbsorption (logic)Continuum (set theory)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: magnetic fieldStars: individual: X1822-371Astronomy and AstrophysicsRadiusAstronomy and AstrophysicX-rays: binarieInterstellar mediumNeutron starSpace and Planetary ScienceEddington luminositysymbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

On obtaining neutron star mass and radius constraints from quiescent low-mass X-ray binaries in the Galactic plane

2018

X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primarily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $R\lesssim$14.5 km for EXO 0748-…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E Astrofisicaneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; Dense matter; Equation of state; Stars]0103 physical sciencesAccretion accretion disc010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Equation of stateAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusAstronomy and AstrophysicGalactic planeSpectral componentX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceGlobular clusterAstrophysics - High Energy Astrophysical PhenomenaLow MassDense matterMonthly Notices of the Royal Astronomical Society
researchProduct

A faint outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021 in NGC 6440

2018

SAX J1748.9-2021 is an accreting X-ray millisecond pulsar observed in outburst five times since its discovery in 1998. In early October 2017, the source started its sixth outburst, which lasted only ~13 days, significantly shorter than the typical 30 days duration of the previous outbursts. It reached a 0.3-70 keV unabsorbed peak luminosity of $\sim3\times10^{36}$ erg/s. This is the weakest outburst ever reported for this source to date. We analyzed almost simultaneous XMM-Newton, NuSTAR and INTEGRAL observations taken during the decaying phase of its 2017 outburst. We found that the spectral properties of SAX J1748.9-2021 are consistent with an absorbed Comptonization plus a blackbody comp…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminositySettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAccretion accretion disc010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MillisecondAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicCoronaX-rays: binarieNeutron starX-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021Space and Planetary ScienceElectron temperaturebinaries; X-Rays: galaxies -X-rays: individuals: SAX J1748.9-2021; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion discs; X-rays]Astrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct