Search results for "ADIABATIC PASSAGE"
showing 10 items of 28 documents
Stimulated Raman Adiabatic Passage via bright state in Lambda medium of unequal oscillator strengths
2012
International audience; We consider the population transfer process in a Lambda-type atomic medium of unequal oscillator strengths by stimulated Raman adiabatic passage via bright-state (b-STIRAP) taking into account propagation effects. Using both analytic and numerical methods we show that the population transfer efficiency is sensitive to the ratio q(p)/q(s) of the transition oscillator strengths. We find that the case q(p) > q(s) is more detrimental for population transfer process as compared to the case where q(p) <= q(s). For this case it is possible to increase medium dimensions while permitting efficient population transfer. A criterion determining the interaction adiabaticity in th…
Stimulated Raman adiabatic passage in a $\Lambda$-system in the presence of quantum noise
2011
We exploit a microscopically derived master equation for the study of STIRAP in the presence of decay from the auxiliary level toward the initial and final state, and compare our results with the predictions obtained from a phenomenological model previously used [P. A. Ivanov, N. V. Vitanov, and K. Bergmann, Phys. Rev. A 72, 053412 (2005)]. It is shown that our approach predicts a much higher efficiency. The effects of temperature are also taken into account, proving that in b-STIRAP thermal pumping can increase the efficiency of the population transfer.
Stimulated Raman adiabatic passage in an open quantum system: Master equation approach
2010
A master equation approach to the study of environmental effects in the adiabatic population transfer in three-state systems is presented. A systematic comparison with the non-Hermitian Hamiltonian approach [N. V. Vitanov and S. Stenholm, Phys. Rev. A {\bf 56}, 1463 (1997)] shows that in the weak coupling limit the two treatments lead to essentially the same results. Instead, in the strong damping limit the predictions are quite different: in particular the counterintuitive sequences in the STIRAP scheme turn out to be much more efficient than expected before. This point is explained in terms of quantum Zeno dynamics.
Theory of the bright-state stimulated Raman adiabatic passage
2009
We describe analytically and numerically the process of population transfer by stimulated Raman adiabatic passage through a bright state when the pulses propagate in a medium. Limitations of the adiabaticity are analyzed and interpreted in terms of reshaping of the pulses. We find parameters for the pulses for which the population transfer is nearly complete over long distances.
Fast and robust population transfer in two-level quantum systems with dephasing noise and/or systematic frequency errors
2013
We design, by invariant-based inverse engineering, driving fields that invert the population of a two-level atom in a given time, robustly with respect to dephasing noise and/or systematic frequency shifts. Without imposing constraints, optimal protocols are insensitive to the perturbations but need an infinite energy. For a constrained value of the Rabi frequency, a flat $\pi$ pulse is the least sensitive protocol to phase noise but not to systematic frequency shifts, for which we describe and optimize a family of protocols.
The branching ratio of intercombination A1Σ+∼b3Π→a3Σ+/X1Σ+transitions in the RbCs molecule: Measurements and calculations
2020
Abstract We observed the A 1 Σ + ∼ b 3 Π → a 3 Σ + / X 1 Σ + laser-induced fluorescence (LIF) of the RbCs molecule excited from the ground X 1 Σ + state by the Ti:Sapphire laser. The LIF spectra from the common perturbed levels of the singlet-triplet A ∼ b complex was recorded by the Fourier-transform (FT) spectrometer with the instrumental resolution of 0.03 cm − 1 . The relative intensity distribution in the rotationally resolved A ∼ b → a 3 Σ + ( v a ) / X 1 Σ + ( v X ) progressions was measured, and their branching ratio was found to be about of 1 ÷ 5 × 10 − 4 in the bound region of the a 3 Σ + and X 1 Σ + states. The experiment was complemented with the scalar- and full-relativistic ca…
Topology of adiabatic passage
2002
We examine the topology of eigenenergy surfaces characterizing the population transfer processes based on adiabatic passage. We show that this topology is the essential feature for the analysis of the population transfers and the prediction of its final result. We reinterpret diverse known processes, such as stimulated Raman adiabatic passage (STIRAP), frequency-chirped adiabatic passage and Stark-chirped rapid adiabatic passage. Moreover, using this picture, we display new related possibilities of transfer. In particular, we show that we can selectively control the level that will be populated in STIRAP process in $\ensuremath{\Lambda}$ or V systems by the choice of the peak amplitudes or …
Design of a lambda configuration in artificial coherent nanostructures
2015
The implementation of a three-level Lambda System in artificial atoms would allow to perform advanced control tasks typical of quantum optics in the solid state realm, with photons in the $\mathrm{\mu m}$/mm range. However hardware constraints put an obstacle since protection from decoherence is often conflicting with efficient coupling to external fields. We address the problem of performing conventional STImulated Raman Adiabatic Passage (STIRAP) in the presence of low-frequency noise. We propose two strategies to defeat decoherence, based on "optimal symmetry breaking" and dynamical decoupling. We suggest how to apply to the different implementations of superconducting artificial atoms, …
Design of a Lambda system for population transfer in superconducting nanocircuits
2013
The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only i…
Quantum plasmonics with multi-emitters: application to stimulated Raman adiabatic passage
2018
We construct a mode-selective effective model describing the interaction of the localised surface plasmon polaritons (LSPs) supported by a spherical metal nanoparticle (MNP) with N quantum emitters (QEs) in an arbitrary geometric arrangement. Simplifying previously presented procedures, we develop a formulation in which the field response in the presence of the MNP can be decomposed into orthogonal modes, expanding the Green tensor of the system in the spherical vector harmonics basis and using the generalized global Löwdin orthogonalization algorithm. We investigate the possibility of using the LSPs as mediators of an efficient control of population transfer between two QEs. We show that a…