Search results for "AFI"

showing 10 items of 6716 documents

Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting.

2016

Summary Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1–4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we…

0301 basic medicineEmbryo NonmammalianEfferentNeurogenesisThalamusBiologyTime-Lapse ImagingGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesmedicineAnimalsAxonDiencephalonZebrafishZebrafishBody PatterningNeuronsAxon extensionAnatomyCommissureZebrafish Proteinsbiology.organism_classificationAxon growthAxons030104 developmental biologymedicine.anatomical_structureHabenulanervous systemGeneral Agricultural and Biological SciencesNeuroscienceCurrent biology : CB
researchProduct

Axis Specification in Zebrafish Is Robust to Cell Mixing and Reveals a Regulation of Pattern Formation by Morphogenesis

2020

Summary A fundamental question in developmental biology is how the early embryo establishes the spatial coordinate system that is later important for the organization of the embryonic body plan. Although we know a lot about the signaling and gene-regulatory networks required for this process, much less is understood about how these can operate to pattern tissues in the context of the extensive cell movements that drive gastrulation. In zebrafish, germ layer specification depends on the inheritance of maternal mRNAs [1, 2, 3], cortical rotation to generate a dorsal pole of β-catenin activity [4, 5, 6, 7, 8], and the release of Nodal signals from the yolk syncytial layer (YSL) [9, 10, 11, 12]…

0301 basic medicineEmbryo NonmammalianMorphogenesisNodal signalingCell Communicationpattern emergenceArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicinepescoidMorphogenesisAnimalsAxis specificationRNA MessengergastrulationZebrafishWnt Signaling PathwayZebrafishbeta CateninBody PatterningbiologyexplantWnt signaling pathwayCell Polaritybiology.organism_classificationCell biologyGastrulation030104 developmental biologyorganiserhindbrain patterningNODALGeneral Agricultural and Biological SciencesDevelopmental biology030217 neurology & neurosurgeryCurrent Biology
researchProduct

Characterization of multiciliated ependymal cells that emerge in the neurogenic niche of the aged zebrafish brain

2016

In mammals, ventricular walls of the developing brain maintain a neurogenic niche, in which radial glial cells act as neural stem cells (NSCs) and generate new neurons in the embryo. In the adult brain, the neurogenic niche is maintained in the ventricular-subventricular zone (V-SVZ) of the lateral wall of lateral ventricles and the hippocampal dentate gyrus. In the neonatal V-SVZ, radial glial cells transform into astrocytic postnatal NSCs and multiciliated ependymal cells. On the other hand, in zebrafish, radial glial cells continue to cover the surface of the adult telencephalic ventricle and maintain a higher neurogenic potential in the adult brain. However, the cell composition of the …

0301 basic medicineEpendymal CellbiologyGeneral NeuroscienceDentate gyrusNeurogenesisHippocampal formationbiology.organism_classificationNeural stem cell03 medical and health sciencesLateral ventricles030104 developmental biology0302 clinical medicinemedicine.anatomical_structurenervous systemmedicineEpendymaZebrafishNeuroscience030217 neurology & neurosurgeryJournal of Comparative Neurology
researchProduct

Non-primate lentiviral vectors and their applications in gene therapy for ocular disorders

2018

Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruse…

0301 basic medicineEye DiseasesGenetic enhancementGenetic Vectorslcsh:QR1-502Settore BIO/11 - Biologia MolecolareReviewComputational biologyGenomelcsh:MicrobiologyLentiviruViral vectorEIAV03 medical and health sciences0302 clinical medicineGene therapyVirologyJDVAnimalsHumansZebrafishDrug CarrierZebrafishDrug CarriersBIVbiologyAnimalLentivirusCAEVEye DiseaseGenetic Therapybiology.organism_classificationFIVOphthalmologyDisease Models Animal030104 developmental biologyInfectious DiseasesVMVLentiviral vector030217 neurology & neurosurgeryHuman
researchProduct

Skeletal Dysplasia Mutations Effect on Human Filamins’ Structure and Mechanosensing

2016

AbstractCells’ ability to sense mechanical cues in their environment is crucial for fundamental cellular processes, leading defects in mechanosensing to be linked to many diseases. The actin cross-linking protein Filamin has an important role in the conversion of mechanical forces into biochemical signals. Here, we reveal how mutations in Filamin genes known to cause Larsen syndrome and Frontometaphyseal dysplasia can affect the structure and therefore function of Filamin domains 16 and 17. Employing X-ray crystallography, the structure of these domains was first solved for the human Filamin B. The interaction seen between domains 16 and 17 is broken by shear force as revealed by steered mo…

0301 basic medicineFilaminsScienceProtein domainPeptide bindingPlasma protein bindingmacromolecular substancesBiologyMolecular Dynamics SimulationFilaminmedicine.disease_causeBioinformaticsCrystallography X-RayOsteochondrodysplasiasMechanotransduction CellularArticlecomputational biophysics03 medical and health sciences0302 clinical medicineProtein DomainsmedicineHumansLarsen syndromeForeheadMechanotransductionNMR-spektroskopiaActinMutationMultidisciplinaryBinding SitesQRSAXSmedicine.diseasecytoskeletal proteinsActinsCell biologybody regions030104 developmental biologyMutationMedicine030217 neurology & neurosurgeryröntgenkristallografiaProtein Binding
researchProduct

Complexity of gap junctions between horizontal cells of the carp retina.

2016

In the vertebrate retina, horizontal cells (HCs) reveal homologous coupling by gap junctions (gj), which are thought to consist of different connexins (Cx). However, recent studies in mouse, rabbit and zebrafish retina indicate that individual HCs express more than one connexin. To provide further insights into the composition of gj connecting HCs and to determine whether HCs express multiple connexins, we examined the molecular identity and distribution of gj between HCs of the carp retina. We have cloned four carp connexins designated Cx49.5, Cx55.5, Cx52.6 and Cx53.8 with a close relationship to connexins previously reported in HCs of mouse, rabbit and zebrafish, respectively. Using in s…

0301 basic medicineFish ProteinsCarpsImmunoelectron microscopyBlotting WesternConnexinIn situ hybridizationRetinal Horizontal Cellsbehavioral disciplines and activitiesPolymerase Chain ReactionConnexins03 medical and health sciencesMice0302 clinical medicineCell Line TumormedicineAnimalsProtein IsoformsElectrical synapseAmino Acid SequenceCarpMicroscopy ImmunoelectronZebrafishIn Situ HybridizationRetinabiologyGeneral NeuroscienceGap junctionGap JunctionsAnatomyDendritesbiology.organism_classificationImmunohistochemistryAxonsCell biology030104 developmental biologymedicine.anatomical_structureembryonic structuressense organsSequence Alignment030217 neurology & neurosurgeryNeuroscience
researchProduct

Zebrafish as a Model for the Study of Chaperonopathies

2016

There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies. Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone genes during developmen…

0301 basic medicineGeneticsbiologymedicine.diagnostic_testPhysiologyClinical BiochemistryMutantCell BiologyComputational biologybiology.organism_classificationClinical biochemistry03 medical and health sciences030104 developmental biologyChaperone (protein)biology.proteinmedicineGeneZebrafishOrganismGenetic testingZebrafish genomeJournal of Cellular Physiology
researchProduct

Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions

2017

Background In nature, organisms are commonly coinfected by two or more parasite strains, which has been shown to influence disease virulence. Yet, the effects of coinfections of environmental opportunistic pathogens on disease outcome are still poorly known, although as host-generalists they are highly likely to participate in coinfections. We asked whether coinfection with conspecific opportunistic strains leads to changes in virulence, and if these changes are associated with bacterial growth or interference competition. We infected zebra fish (Danio rerio) with three geographically and/or temporally distant environmental opportunist Flavobacterium columnare strains in single and in coinf…

0301 basic medicineGenotypemedia_common.quotation_subjectVirulencecooperationgenotyyppiFlavobacteriumIntraspecific competitionCompetition (biology)Host SpecificityMicrobiology03 medical and health sciencesFlavobacterium columnareFish DiseasesgenotypesGenotypemedicineAnimalsseeprakalaPathogenZebrafishEcology Evolution Behavior and Systematicsmedia_commonInhibitionbiologyCompetitionVirulenceHost (biology)Zebra fishCoinfectionvirulenssibiology.organism_classificationmedicine.diseaseinhibitionCooperation030104 developmental biologyFlavobacterium columnareHost-Pathogen InteractionsCoinfectioncompetitionResearch ArticleBMC Evolutionary Biology
researchProduct

Histones, Their Variants and Post-translational Modifications in Zebrafish Development.

2020

Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental ep…

0301 basic medicineHistone-modifying enzymeshistone posttranslational modificationsMini ReviewMorphogenesisSettore BIO/11 - Biologia Molecolarematernal-to-zygotic transitionComparative biologyComputational biologyhistone03 medical and health sciencesCell and Developmental Biology0302 clinical medicineEpigeneticshistone variantsZebrafishlcsh:QH301-705.5developmentzygotic genome activationbiologyepigeneticsCell Biologybiology.organism_classificationzebrafishChromatinhistone histone posttranslational modifications histone variants epigenetics development maternal-to-zygotic transition zygotic genome activation zebrafish030104 developmental biologyHistonelcsh:Biology (General)030220 oncology & carcinogenesisbiology.proteinMaternal to zygotic transitionDevelopmental BiologyFrontiers in cell and developmental biology
researchProduct

Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodula…

2016

IF 3.682; International audience; Few studies have extensively investigated probiotic functions associated with biofilms. Here, we show that strains of Lactobacillus plantarum and Lactobacillus fermentum are able to grow as biofilm on abiotic surfaces, but the biomass density differs between strains. We performed microtiter plate biofilm assays under growth conditions mimicking to the gastrointestinal environment. Osmolarity and low concentrations of bile significantly enhanced Lactobacillus spatial organization. Two L. plantarum strains were able to form biofilms under high concentrations of bile and mucus. We used the agar well-diffusion method to show that supernatants from all Lactobaci…

0301 basic medicineLimosilactobacillus fermentum[SDV]Life Sciences [q-bio][ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionProbiotic bacteriaResistanceEscherichia-coliZebrafish modelProbioticmedicine.disease_causeMonocyteslaw.inventionIn-vitroProbioticlawLactobacillusBileVibrio-choleraeZebrafishComputingMilieux_MISCELLANEOUSbiologySalmonella entericafood and beveragesInterleukin-10Salmonella entericaSulfonic-acidLactobacillus fermentum030106 microbiologyLactic-acid bacteriaMicrobiologyMicrobiologyImmunomodulation03 medical and health sciencesAntibiosisEscherichia coliPseudomonas-aeruginosa biofilmsmedicineAnimalsHumansEscherichia coliImmunomodulatory effectsTumor Necrosis Factor-alphaProbioticsBile-salt hydrolaseCommunitiesAntibiosisBiofilmbiochemical phenomena metabolism and nutritionbiology.organism_classificationImmunity InnateCulture MediaLactobacillus biofilmsMucus030104 developmental biologyBiofilms[SDV.AEN]Life Sciences [q-bio]/Food and NutritionLactobacillus plantarumLactobacillus plantarumFood ScienceFood Microbiology
researchProduct