Search results for "AIC"
showing 10 items of 2470 documents
On Meet-Complements in Cohn Geometries
1993
Within the frame of projective lattice geometry, the present paper investigates classes of meet-complements in Cohn geometries and especially in Ore and Bezout geometries. The algebraic background of these geometries is given by torsion free modules over domains — in particular Ore and Bezout domains. 1
Developing Algebraic Thinking in a Community of Inquiry : Collaboration between Three Teachers and a Didactician
2009
In this thesis I report from a study of the development of algebraic thinking of three teachers, from lower secondary school, and a didactician from a university in Norway (myself). The thesis offers an account of the relationship between the participants’ development of algebraic thinking and the processes related to the creation and development of a community of inquiry. In addition, the thesis presents elements of the relationship between the teachers’ development of algebraic thinking and their thinking in relation to their teaching practice. My theoretical framework was elaborated according to the criteria of relevance and coherence. In order to conceptualise the participants’ developm…
Birkhoff-Frink representations as functors
2010
In an earlier article we characterized, from the viewpoint of set theory, those closure operators for which the classical result of Birkhoff and Frink, stating the equivalence between algebraic closure spaces, subalgebra lattices and algebraic lattices, holds in a many-sorted setting. In the present article we investigate, from the standpoint of category theory, the form these equivalences take when the adequate morphisms of the several different species of structures implicated in them are also taken into account. Specifically, our main aim is to provide a functorial rendering of the Birkhoff-Frink representation theorems for both single-sorted algebras and many-sorted algebras, by definin…
Properties of Generalized Polynomial Spaces in Three Variables
2009
Multivariate interpolation is a topic which often appears in practical modeling problems. Different type of spaces of functions are used for solving interpolation problems. When the interpolation conditions are of different kind, by example, spacial and temporal, one possibility for modeling the problem is to use a generalize degree, in which the monomials exponents are weighted with a weight vector with integer components. In order to use such a generalize polynomial space as interpolation space, it is necessary to know the dimension and a basis of it. The aim of this article is to study and prove many properties of the generalize polynomial spaces in three variables.
Spectral invariance for algebras of pseudodifferential operators on besov-triebel-lizorkin spaces
1993
The algebra of pseudodifferential operators with symbols inS1,δ0, δ<1, is shown to be a spectrally invariant subalgebra of ℒ(bp,qs) and ℒ(Fp,qs).
One-loop integrals with XLOOPS-GiNaC
2001
We present a new algorithm for the reduction of one-loop tensor Feynman integrals within the framework of the XLOOPS project, covering both mathematical and programming aspects. The new algorithm supplies a clean way to reduce the one-loop one-, two- and three-point Feynman integrals with arbitrary tensor rank and powers of the propagators to a basis of simple integrals. We also present a new method of coding XLOOPS in C++ using the GiNaC library.
Analytic curves in power series rings
1990
Generalizations of Clausen's formula and algebraic transformations of Calabi-Yau differential equations
2011
AbstractWe provide certain unusual generalizations of Clausen's and Orr's theorems for solutions of fourth-order and fifth-order generalized hypergeometric equations. As an application, we present several examples of algebraic transformations of Calabi–Yau differential equations.
The polyhedral Hodge number $h^{2,1}$ and vanishing of obstructions
2000
We prove a vanishing theorem for the Hodge number $h^{2,1}$ of projective toric varieties provided by a certain class of polytopes. We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope. In particular, the vanishing theorem for $h^{2,1}$ implies that these deformations are unobstructed.
The module structure of Hochschild homology in some examples
2008
Abstract In this Note we give a simple proof of a conjecture by A. Caldararu stating the compatibility between the modified Hochschild–Kostant–Rosenberg isomorphism and the action of Hochschild cohomology on Hochschild homology in the case of Calabi–Yau manifolds and smooth projective curves. To cite this article: E. Macri` et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).