Search results for "ANNIHILATION"

showing 10 items of 1016 documents

Pseudo-bosons and Riesz Bi-coherent States

2016

After a brief review on D-pseudo-bosons we introduce what we call Riesz bi-coherent states, which are pairs of states sharing with ordinary coherent states most of their features. In particular, they produce a resolution of the identity and they are eigenstates of two different annihilation operators which obey pseudo-bosonic commutation rules.

Condensed Matter::Quantum GasesIdentity (mathematics)Theoretical physicsAnnihilationRiesz representation theoremQuantum mechanicsCoherent statesCommutationEigenvalues and eigenvectorsMathematicsResolution (algebra)Boson
researchProduct

Cooling and slowing of trapped antiprotons below 100 meV

1989

Electron cooling of trapped antiprotons allows their storage at energies 10 million times lower than is available in any antiproton storage ring. More than 60 000 antiprotons with energies from 0 to 3000 eV are stored in an ion trap from a single pulse of 5.9-MeV antiprotons from LEAR. Trapped antiprotons maintain their initial energy distribution over a storage lifetime exceeding 50 h unless allowed to collide with a cold buffer gas of trapped electrons, where- upon they cool dramatically to 1 eV in tens of seconds. The cooled antiprotons can be stacked into a harmonic potential well suited for long-term storage and precision measurements.

Condensed Matter::Quantum GasesPhysicsAnnihilationEnergy distributionBuffer gasGeneral Physics and AstronomyElectronlaw.inventionNuclear physicsAntiprotonlawPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsIon trapAtomic physicsNuclear ExperimentStorage ringElectron coolingPhysical Review Letters
researchProduct

Searches for neutral Higgs bosons in e+e− collisions at centre-of-mass energies from 192 to 202 GeV

2000

Searches for neutral Higgs bosons are performed with the 237 pb-1 of data collected in 1999 by the ALEPH detector at LEP, for centre-of-mass energies between 191.6 and 201.6 GeV. These searches apply to Higgs bosons within the context of the Standard Model and its minimal supersymmetric extension (MSSM) as well as to invisibly decaying Higgs bosons. No evidence of a signal is seen. A lower limit on the mass of the Standard Model Higgs boson of 107.7 GeV/c2 at 95% confidence level is set. In the MSSM, lower limits of 91.2 and 91.6 GeV/c2 are derived for the masses of the neutral Higgs bosons h and A, respectively. For a Higgs boson decaying invisibly and produced with the Standard Model cros…

Condensed Matter::Quantum GasesPhysicsNuclear and High Energy PhysicsAlephParticle physics010308 nuclear & particles physicsElectron–positron annihilationHigh Energy Physics::PhenomenologyFOS: Physical sciencesTechnicolorContext (language use)Supersymmetry01 natural sciencesHigh Energy Physics - ExperimentStandard ModelNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Higgs bosonHigh Energy Physics::Experiment010306 general physicsParticle Physics - ExperimentBosonPhysics Letters B
researchProduct

Using electric fields to prevent mirror-trapped antiprotons in antihydrogen studies

2013

The signature of trapped antihydrogen ($\overline{\mathrm{H}}$) atoms is the annihilation signal detected when the magnetic trap that confines the atoms is suddenly switched off. This signal would be difficult to distinguish from the annihilation signal of any trapped $\overline{p}$ that is released when the magnetic trap is switched off. This work deduces the large cyclotron energy ($g$137 eV) required for magnetic trapping of $\overline{p}$, considers the possibility that such $\overline{p}$ are produced, and explores the effectiveness of an electric field applied to clear charged particles from the trapping volume before $\overline{\mathrm{H}}$ detection. No mechanisms are found that can…

Condensed Matter::Quantum GasesPhysicsParticle physicsAnnihilationHigh Energy Physics::PhenomenologyCyclotronAtomic and Molecular Physics and OpticsCharged particlelaw.inventionlawAntiprotonElectric fieldMagnetic trapPhysics::Atomic PhysicsAtomic physicsAntihydrogenEnergy (signal processing)Physical Review A
researchProduct

Electron-cooled accumulation of 4 × 109positrons for production and storage of antihydrogen atoms

2016

Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and <6 × 10−17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e−) in this first demonstration of using e− for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen () production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

Condensed Matter::Quantum GasesPhysicsPhysics::General PhysicsAntiparticleAnnihilationPlasmaElectronCondensed Matter PhysicsPenning trap01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasNuclear physicsTorrAntimatter0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physics010306 general physicsAntihydrogenJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Shining primordial black holes

2021

We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion "winos", with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the DM particles are captured by PBHs leading to the presence of PBHs with dark minihalos in the Milky Way today. The strongest constraints for the wino DM come from the production of narrow line gamma rays from wino annihilation in the Galactic Center. We analyse in detail the viability of the mixed wino DM scenario, and determine the constraints on the fraction of DM in PBHs assuming a cored halo profile in the Milky Way. We show that already wi…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Milky WayAstrophysics::High Energy Astrophysical PhenomenaastrofysiikkaDARK-MATTER ANNIHILATIONFOS: Physical sciencesmustat aukotPrimordial black holeAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicskosmologia7. Clean energy01 natural sciences114 Physical sciencesGeneral Relativity and Quantum Cosmologypimeä aineHigh Energy Physics - Phenomenology (hep-ph)WIMP0103 physical sciences010306 general physicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsGalactic CenterGAMMA-RAYSCONSTRAINTSFermionHigh Energy Physics - PhenomenologyMixed dark matterMILKYHaloAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The transient gravitational-wave sky

2013

Interferometric detectors will very soon give us an unprecedented view of the gravitational-wave sky, and in particular of the explosive and transient Universe. Now is the time to challenge our theoretical understanding of short-duration gravitational-wave signatures from cataclysmic events, their connection to more traditional electromagnetic and particle astrophysics, and the data analysis techniques that will make the observations a reality. This paper summarizes the state of the art, future science opportunities, and current challenges in understanding gravitational-wave transients.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Explosive materialmedia_common.quotation_subjectELECTROMAGNETIC COUNTERPARTSFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologySPIN-DOWN LIMIT0103 physical sciencesPRESUPERNOVA EVOLUTIONCORE-COLLAPSE010306 general physics010303 astronomy & astrophysicsARMED SPIRAL INSTABILITYmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsGAMMA-RAY BURSTSNEUTRINO PAIR ANNIHILATIONGravitational waveAstronomyMASS BLACK-HOLESUniverseBAR-MODE INSTABILITYInterferometrySkyData analysisTransient (oscillation)Astrophysics - High Energy Astrophysical PhenomenaDRIVEN SUPERNOVAgravitational waves neutron stars black holesAstrophysics - Cosmology and Nongalactic AstrophysicsClassical and Quantum Gravity
researchProduct

Kinetics of correlated annealing of radiation defects in alkali halide crystals

1992

Abstract Kinetics of the correlated annealing of pairs of neutral (F-H) Frenkel defects in the KBr crystal is treated theoretically, taking into account defect diffusion, and annihilation at short distances stimulated by an elastic interaction. It is shown that an elastic interaction affects the annealing kinetics and the survival probability of close geminate detects considerably. The widespread description of the correlated annealing in terms of a first-order reaction fails for close defects yielding effective energies which in fact differ essentially from an activation energy of diffusion. Ea, even if it is corrected by an interaction energy. The effect of the initial distribution of def…

CrystalNuclear and High Energy PhysicsCrystallographyAnnihilationAnnealing (metallurgy)ChemistryKineticsHalideActivation energyInteraction energyAlkali metalInstrumentationMolecular physicsNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Observation of ψ(3686)→η′e+e−

2018

Abstract Using a data sample of 448.1 × 10 6 ψ ( 3686 ) events collected with the BESIII detector at the BEPCII collider, we report the first observation of the electromagnetic Dalitz decay ψ ( 3686 ) → η ′ e + e − , with significances of 7.0σ and 6.3σ when reconstructing the η ′ meson via its decay modes η ′ → γ π + π − and η ′ → π + π − η ( η → γ γ ), respectively. The weighted average branching fraction is determined to be B ( ψ ( 3686 ) → η ′ e + e − ) = ( 1.90 ± 0.25 ± 0.11 ) × 10 − 6 , where the first uncertainty is statistical and the second systematic.

Dalitz decayNuclear and High Energy PhysicsMesonElectron–positron annihilationBESIII; Charmonium; Dalitz decay; e+e− Annihilation; Nuclear and High Energy Physicse + e − Annihilation01 natural sciencesOmegaNOlaw.inventionBESIII; Charmonium; Dalitz decay; e+e−Annihilation; Nuclear and High Energy PhysicsNuclear physicslaw0103 physical sciencese+e−Annihilation010306 general physicsColliderCharmoniumPhysics010308 nuclear & particles physicsGenerator (category theory)Branching fractionBESIIIe+e− AnnihilationPseudoscalarBESIII; Charmonium; Dalitz decay; e + e − Annihilation ; Nuclear and High Energy PhysicsPhysics Letters B
researchProduct

Limit on the production of a light vector gauge boson in $\phi $ mesondecays with the KLOE detector

2012

We present a new limit on the production of a light dark-force mediator with the KLOE detector at DAPHNE. This boson, called U, has been searched for in the decay phi --> eta U, U --> e+ e-, analyzing the decay eta --> pi0 pi0 pi0 in a data sample of 1.7 fb-1. No structures are observed in the e+e- invariant mass distribution over the background. This search is combined with a previous result obtained from the decay eta --> pi+ pi- pi0, increasing the sensitivity. We set an upper limit at 90% C.L. on the ratio between the U boson coupling constant and the fine structure constant of alpha'/alpha < 1.7x10^-5 for 30<M_U<400 MeV and alpha'/alpha < 8x10^-6 for the sub-region 50<M_U<210 MeV. This…

Dark forcesNuclear and High Energy PhysicsParticle physicsElectron–positron annihilationFOS: Physical sciences01 natural sciencesSettore FIS/04 - Fisica Nucleare e Subnuclearee(+)e(-) Collisions Dark forces Gauge vector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)e(+)e(-) Collisions0103 physical sciencesgauge vector bosonInvariant massNuclear Experiment010306 general physicsBosonPhysicsCoupling constantGauge boson$e^{+}e^{-}$ collisions010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleForm factor (quantum field theory)Vector meson dominancePhi mesondark forcesHigh Energy Physics::ExperimentGauge vector boson
researchProduct