Search results for "AOT"
showing 10 items of 347 documents
Bifurcation analysis of a TaO memristor model
2019
This paper presents a study of bifurcation in the time-averaged dynamics of TaO memristors driven by narrow pulses of alternating polarities. The analysis, based on a physics-inspired model, focuses on the stable fixed points and on how these are affected by the pulse parameters. Our main finding is the identification of a driving regime when two stable fixed points exist simultaneously. To the best of our knowledge, such bistability is identified in a single memristor for the first time. This result can be readily tested experimentally, and is expected to be useful in future memristor circuit designs.
Quantifying non-periodicity of non-stationary time series through wavelets
2019
In this paper, we introduce a new wavelet tool for studying the degree of non-periodicity of time series that is based on some recently defined tools, such as the \textit{windowed scalogram} and the \textit{scale index}. It is especially appropriate for non-stationary time series whose characteristics change over time and so, it can be applied to a wide variety of disciplines. In addition, we revise the concept of the scale index and pose a theoretical problem: it is known that if the scale index of a function is not zero then it is non-periodic, but if the scale index of a function is zero, then it is not proved that it has to be periodic. This problem is solved for the particular case of …
Parameter Switching Synchronization
2016
In this paper we show how the Parameter Switching algorithm, utilized initially to approximate attractors of a general class of nonlinear dynamical systems, can be utilized also as a synchronization-induced method. Two illustrative examples are considered: the Lorenz system and the Rabinovich-Fabrikant system.
Porosities and dimensions of measures satisfying the doubling condition
1999
Summary of a talk at the conference The Chaotic Universe in Rome, Feb, 1999
On differences and similarities in the analysis of Lorenz, Chen, and Lu systems
2015
Currently it is being actively discussed the question of the equivalence of various Lorenz-like systems and the possibility of universal consideration of their behavior (Algaba et al., 2013a,b, 2014b,c; Chen, 2013; Chen and Yang, 2013; Leonov, 2013a), in view of the possibility of reduction of such systems to the same form with the help of various transformations. In the present paper the differences and similarities in the analysis of the Lorenz, the Chen and the Lu systems are discussed. It is shown that the Chen and the Lu systems stimulate the development of new methods for the analysis of chaotic systems. Open problems are discussed.
A new approach to fuzzy sets: Application to the design of nonlinear time-series, symmetry-breaking patterns, and non-sinusoidal limit-cycle oscillat…
2017
It is shown that characteristic functions of sets can be made fuzzy by means of the $\mathcal{B}_{\kappa}$-function, recently introduced by the author, where the fuzziness parameter $\kappa \in \mathbb{R}$ controls how much a fuzzy set deviates from the crisp set obtained in the limit $\kappa \to 0$. As applications, we present first a general expression for a switching function that may be of interest in electrical engineering and in the design of nonlinear time-series. We then introduce another general expression that allows wallpaper and frieze patterns for every possible planar symmetry group (besides patterns typical of quasicrystals) to be designed. We show how the fuzziness parameter…
Horseshoe-shaped maps in chaotic dynamics of long Josephson junction driven by biharmonic signals
2000
Abstract A collective coordinate approach is applied to study chaotic responses induced by an applied biharmonic driven signal on the long Josephson junction influenced by a constant dc-driven field with breather initial conditions. We derive a nonlinear equation for the collective variable of the breather and a new version of the Melnikov method is then used to demonstrate the existence of Smale horseshoe-shaped maps in its dynamics. Additionally, numerical simulations show that the theoretical predictions are well reproduced. The subharmonic Melnikov theory is applied to study the resonant breathers. Results obtained using this approach are in good agreement with numerical simulations of …
Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis
2020
Parkinson’s disease is found as a progressive neurodegenerative condition which affects motor circuit by the loss of up to 70% of dopaminergic neurons. Thus, diagnosing the early stages of incidence is of great importance. In this article, a novel chaos-based stochastic model is proposed by combining the characteristics of chaotic firefly algorithm with Kernel-based Naïve Bayes (KNB) algorithm for diagnosis of Parkinson’s disease at an early stage. The efficiency of the model is tested on a voice measurement dataset that is collected from “UC Irvine Machine Learning Repository.” The dynamics of chaos optimization algorithm will enhance the firefly algorithm by introducing six types of chao…
Route to chaos in the weakly stratified Kolmogorov flow
2019
We consider a two-dimensional fluid exposed to Kolmogorov’s forcing cos(ny) and heated from above. The stabilizing effects of temperature are taken into account using the Boussinesq approximation. The fluid with no temperature stratification has been widely studied and, although relying on strong simplifications, it is considered an important tool for the theoretical and experimental study of transition to turbulence. In this paper, we are interested in the set of transitions leading the temperature stratified fluid from the laminar solution [U∝cos(ny),0, T ∝ y] to more complex states until the onset of chaotic states. We will consider Reynolds numbers 0 < Re ≤ 30, while the Richardson numb…
Chaotic behavior in deformable models: the double-well doubly periodic oscillators
2001
Abstract The motion of a particle in a one-dimensional perturbed double-well doubly periodic potential is investigated analytically and numerically. A simple physical model for calculating analytically the Melnikov function is proposed. The onset of chaos is studied through an analysis of the phase space, a construction of the bifurcation diagram and a computation of the Lyapunov exponent. The parameter regions of chaotic behavior predicted by the theoretical analysis agree very well with numerical simulations.