Search results for "ASM"
showing 10 items of 16598 documents
Gasdynamic ECR ion source for negative ion production
2018
H− ion sources are needed in various areas of accelerator technology, such as beam injection into cyclotrons and storage rings and as a part of neutral beam injectors for plasma heating in experimental facilities studying thermonuclear fusion. It was recently demonstrated that gasdynamic ion source based on ECR discharge in a simple mirror trap is very efficient for proton beam production [1]. Here we use the gasdynamic plasma source as the first stage driver of volumetric negative ion production through dissociative electron attachment (DEA) [2]. Experiments were performed with a pulsed 37 GHz / up to 100 kW gyrotron radiation in a dual-trap magnetic system, which consists of two identical…
An Experimental Study of Waveguide Coupled Microwave Heating with Conventional Multicusp Negative Ion Source
2015
Negative ion production with conventional multicusp plasma chambers utilizing 2.45 GHz microwave heating is demonstrated. The experimental results were obtained with the multicusp plasma chambers and extraction systems of the RFdriven RADIS ion source and the filament driven arc discharge ion source LIISA. A waveguide microwave coupling system, which is almost similar to the one used with the SILHI ion source, was used. The results demonstrate that at least one third of negative ion beam obtained with inductive RF-coupling (RADIS) or arc discharge (LIISA) can be achieved with 1 kW of 2.45 GHz microwave power in CW mode without any modification of the plasma chamber. The co-extracted electro…
Ultrasonic nebulization inductively coupled plasma optical emission spectrometry method for wine analysis
2020
Abstract A methodology was developed to determine mineral elements in wines using Inductively Coupled Plasma Optical Emission Spectrometry combined with ultrasonic nebulization. The concentration of 36 elements (Al, B, Ba, Bi, Ca, Cd, Ce, Co, Cr, Dy, Er, Eu, Fe, Gd, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Pb, Pr, Sb, Sc, Sm, Sr, Tb, Ti, Tm, V, Y, Yb, and Zn) was determined in 59 wine samples and used to distinguish between Brazilian and Spanish wines. The best conditions for the plasma were selected using a two-level factorial design: radiofrequency power 1500 W; plasma gas flow rate 15 L min−1; auxiliary 0.70 L min−1; and nebulizer 0.40 L min−1. An exploratory multivariate analysis by Principal…
Spark Plasma Sintering of Metallic Glasses
2019
Spark plasma sintering (SPS) of metallic glasses (MG) can be quite different from sintering crystalline metallic alloys. Indeed, MG behave differently with increasing temperature, as they encounter a glass transition and devitrification. Their shaping can thus be compared to what can be performed on thermoplastic polymers. SPS is a promising way to prepare bulk parts from amorphous powders, since it allows very fast heating and cooling rates. It gives an advantage to avoid or limit devitrification of the amorphous phase upon the thermal cycle. However, diffusion mechanisms, which generally control densification, are activated at temperatures that are not compatible with MG structural integr…
Production of dense nanostructured materials using FAPAS and SPS techniques
2011
International audience
The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source
2021
Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…
The biased disc of an electron cyclotron resonance ion source as a probe of instability-induced electron and ion losses
2019
International audience; Electron Cyclotron Resonance Ion Source (ECRIS) plasmas are prone to kinetic instabilities resulting in loss of electron and ion confinement. It is demonstrated that the biased disk of an ECRIS can be used as a probe to quantify such instability-induced electron and ion losses occurring in less than 10 µs. The qualitative interpretation of the data is supported by the measurement of the energy spread of the extracted ion beams implying a transient plasma potential >1.5 kV during the instability. A parametric study of the electron losses combined with electron tracking simulations allows for estimating the fraction of electrons expelled in each instability event to be…
Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities
2015
MonPS16; International audience; The long-term operation of high charge state electron cyclotron resonance ion sources fed withhigh microwave power has caused damage to the plasma chamber wall in several laboratories.Porosity, or a small hole, can be progressively created in the wall on a year time scale, which cancause a water leak from the cooling system into the plasma chamber vacuum. A burnout of theVENUS chamber is investigated. Information on the hole formation and on the necessary localhot electron power density is presented. Next, the hot electron flux to the wall is studied bymeans of simulations. First, the results of a simple model assuming that electrons are fullymagnetized and …
Estimating ion confinement times from beam current transients in conventional and charge breeder ECRIS
2019
International audience; Cumulative ion confinement times are probed by measuring decaying ion current transients in pulsed material injection mode. The method is applied in a charge breeder and conventional ECRIS yielding mutually corroborative results. The cumulative confinement time estimates vary from approximately 2 ms–60 ms with a clear dependence on the ion charge-to-mass ratio—higher charges having longer residence times. The long cumulative confinement times are proposed as a partial explanation to recently observed unexpectedly high ion temperatures. The results are relevant for rare ion beam (RIB) production as the confinement time and the lifetime of stable isotopes can be used f…
MD Simulation Investigation on the Binding Process of Smoke-Derived Germination Stimulants to Its Receptor
2019
Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of thre…