Search results for "ASTROPHYSICS"
showing 10 items of 8341 documents
GRB 050904 at redshift 6.3: observations of the oldest cosmic explosion after the Big Bang
2005
We present optical and near-infrared observations of the afterglow of the gamma-ray burst GRB 050904. We derive a photometric redshift z = 6.3, estimated from the presence of the Lyman break falling between the I and J filters. This is by far the most distant GRB known to date. Its isotropic-equivalent energy is 3.4x10^53 erg in the rest-frame 110-1100 keV energy band. Despite the high redshift, both the prompt and the afterglow emission are not peculiar with respect to other GRBs. We find a break in the J-band light curve at t_b = 2.6 +- 1.0 d (observer frame). If we assume this is the jet break, we derive a beaming-corrected energy E_gamma = (4-12)x10^51 erg. This limit shows that GRB 050…
First M87 Event Horizon Telescope Results. II. Array and Instrumentation
2019
The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ~1.3 mm, EHT angular resolution (λ/D) is ~25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of th…
First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole
2019
When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ± 3 μas, which is circular and encompasses a central depression in brightness with a flux rati…
First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
2019
We present measurements of the properties of the central radio source in M87 using Event Horizon Telescope data obtained during the 2017 campaign. We develop and fit geometric crescent models (asymmetric rings with interior brightness depressions) using two independent sampling algorithms that consider distinct representations of the visibility data. We show that the crescent family of models is statistically preferred over other comparably complex geometric models that we explore. We calibrate the geometric model parameters using general relativistic magnetohydrodynamic (GRMHD) models of the emission region and estimate physical properties of the source. We further fit images generated fro…
Time domain astronomy with the THESEUS satellite
2021
THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simu…
The XMM-Newton Optical Monitor survey of the Taurus molecular cloud
2007
The Optical Monitor (OM) on-board XMM-Newton obtained optical/ultraviolet data for the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST), simultaneously with the X-ray detectors. With the XEST OM data, we aim to study the optical and ultraviolet properties of TMC members, and to do correlative studies between the X-ray and OM light curves. In particular, we aim to determine whether accretion plays a significant role in the optical/ultraviolet and X-ray emissions. The Neupert effect in stellar flares is also investigated. Coordinates, average count rates and magnitudes were extracted from OM images, together with light curves with low time resolution (a few kiloseconds). For a …
Extended two-body problem for rotating rigid bodies
2021
A new technique that utilizes surface integrals to find the force, torque and potential energy between two non-spherical, rigid bodies is presented. The method is relatively fast, and allows us to solve the full rigid two-body problem for pairs of spheroids and ellipsoids with 12 degrees of freedom. We demonstrate the method with two dimensionless test scenarios, one where tumbling motion develops, and one where the motion of the bodies resemble spinning tops. We also test the method on the asteroid binary (66391) 1999 KW4, where both components are modelled either as spheroids or ellipsoids. The two different shape models have negligible effects on the eccentricity and semi-major axis, but…
Insolation cycles as a major control equatorial Indian Ocean primary production
1997
Analysis of a continuous sedimentary record taken in the Maldives indicates that strong primary production fluctuations (70 to 390 grams of carbon per square meter per year) have occurred in the equatorial Indian Ocean during the past 910,000 years. The record of primary production is coherent and in phase with the February equatorial insolation, whereas it shows diverse phase behavior with δ 18 O, depending on the orbital frequency (eccentricity, obliquity, or precession) examined. These observations imply a direct control of productivity in the equatorial oceanic system by insolation. In the equatorial Indian Ocean, productivity is driven by the wind intensity of westerlies, which is rel…
Landscape instability at the end of MIS 3 in western Central Europe : evidence from a multi proxy study on a Loess-Palaeosol-Sequence from the easter…
2019
Abstract The Lower Rhine Embayment hosts important Loess-Palaeosol-Sequences (LPS) within the western European loess belt yielding valuable information on landscape evolution and palaeoclimatic dynamics. The study focusses on the palaeoenvironmental development based on a LPS from the eastern shoulder of the Lower Rhine Embayment (Dusseldorf-Grafenberg). The palaeoenvironmental development within the study area is presented and discussed based on high-resolution grain size analyses, selected environmental magnetic parameters, and geochemical analyses complemented by luminescence age estimates. Differences in grain size distribution (ΔGSD) as well as the U-ratio clearly reflect main stratigr…
Earliest salt working in the world: From excavation to microscopy at the prehistoric sites of Ţolici and Lunca (Romania)
2018
Abstract Since the Early Neolithic, salt has played an important role in the social and economic development of populations. Consequently, the study and comprehension of salt management strategies have become a significant component of current archaeological research. This study is part of an interdisciplinary research program consisting of excavations and detailed analyses on two Early Neolithic salt working sites situated in the sub-Carpathian region of Romania, Lunca and Ţolici (county Neamţ). These remarkably well-preserved sites are characterised by stratified deposits several meters thick. Detailed stratigraphic descriptions were followed by optical microscopy analysis (soil micromorp…