Search results for "ASTROPHYSICS"

showing 10 items of 8341 documents

Impact of the interplay of piezoelectric strain and current-induced heating on the field-like spin–orbit torque in perpendicularly magnetized Ta/Co20…

2021

Spin–orbit torques (SOTs) are known to be the most efficient way to manipulate the magnetization direction by electrical currents. While, conventionally, one symmetry component of the SOTs, namely, the damping-like torque, was considered to play a primary role, recently, the significance of the other component, the field-like torque, has been revised, owing to the non-trivial dynamics it can induce in heavy metal/ferromagnet multilayers. In this work, we first discuss the unusual behavior of the field-like SOT in a Ta/CoFeB/Ta/MgO multilayer system with a reduced magnetic anisotropy and demonstrate an energy-efficient approach to manipulate the magnitude of the SOT effective fields. Finally…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Field (physics)Condensed matter physicsSpintronics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPiezoelectricitySymmetry (physics)Condensed Matter::Materials ScienceMagnetizationMagnetic anisotropyFerromagnetism0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

2015

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

010302 applied physicsMaterials scienceta114Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceBremsstrahlungFOS: Physical sciencesPlasmaElectronphotoelectron emissionRadiation01 natural sciences7. Clean energyElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals

2018

Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Astrophysics::High Energy Astrophysical Phenomenachemistry.chemical_element02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials ScienceCrystallographyParamagnetismchemistrylawAluminiumVacancy defect0103 physical sciencesNeutronIrradiation0210 nano-technologyElectron paramagnetic resonanceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Mass calibration of the energy axis in ToF- E elastic recoil detection analysis

2016

We report on procedures that we have developed to mass-calibrate the energy axis of ToF-E histograms in elastic recoil detection analysis. The obtained calibration parameters allow one to transform the ToF-E histogram into a calibrated ToF-M histogram.

010302 applied physicsPhysicsNuclear and High Energy Physicsta114Physics::Instrumentation and DetectorsPhysics::Medical PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsERD02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNuclear physicsElastic recoil detectionComputer Science::Computer Vision and Pattern RecognitionHistogramelastic recoil detection analysis0103 physical sciencesCalibrationmass calibrationToF-ENuclear Experiment0210 nano-technologyInstrumentationEnergy (signal processing)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Broadband microwave emission spectrum associated with kinetic instabilities in minimum-B ECR plasmas

2017

Plasmas of electron cyclotron resonance ion sources (ECRISs) are prone to kinetic instabilities due to the resonant heating mechanism resulting in anisotropic electron velocity distribution. Frequently observed periodic oscillations of extracted ion beam current in the case of high plasma heating power and/or strong magnetic field have been proven to be caused by cyclotrontype instabilities leading to a notable reduction and temporal variation of highly charged ion production. Thus, investigations of such instabilities and techniques for their suppression have become important topics in ECRIS research. The microwave emission caused by the instabilities contains information on the electron e…

010302 applied physicsPhysicsRange (particle radiation)microwave sourcesIon sourcesIon beamta114Highly charged ionPlasmaAstrophysics::Cosmology and Extragalactic Astrophysicsplasma instabilitiesmagnetic fieldsCondensed Matter PhysicsPlasma oscillationmagneettikentät01 natural sciences7. Clean energyElectron cyclotron resonanceIonPhysics::Plasma Physicsmicrowave spectra0103 physical sciencesAtomic physics010306 general physicsMicrowave
researchProduct

Cyclotron instability in the afterglow mode of minimum-B ECRIS.

2016

It was shown recently that cyclotron instability in non-equilibrium plasma of a minimum-B electron cyclotron resonance ion source (ECRIS) causes perturbation of the extracted ion current and generation of strong bursts of bremsstrahlung emission, which limit the performance of the ion source. The present work is devoted to the dynamic regimes of plasma instability in ECRIS operated in pulsed mode. Instability develops in decaying plasma shortly after heating microwaves are switched off and manifests itself in the form of powerful pulses of electromagnetic emission associated with precipitation of high energy electrons. Time-resolved measurements of microwave emission bursts are presented. I…

010302 applied physicsPhysicsta114ta213Astrophysics::High Energy Astrophysical Phenomenaplasma instabilityCyclotronBremsstrahlungPlasma01 natural sciencesInstabilityIon sourceElectron cyclotron resonance010305 fluids & plasmaslaw.inventionTwo-stream instabilityPhysics::Plasma Physicslaw0103 physical scienceselectron cyclotron resonance ion sourcesAtomic physicsInstrumentationIon cyclotron resonanceThe Review of scientific instruments
researchProduct

The role of radio frequency scattering in high-energy electron losses from minimum-B ECR ion source

2021

Abstract The measurement of the axially lost electron energy distribution escaping from a minimum-B electron cyclotron resonance ion source in the range of 4–800 keV is reported. The experiments have revealed the existence of a hump at 150–300 keV energy, containing up to 15% of the lost electrons and carrying up to 30% of the measured energy losses. The mean energy of the hump is independent of the microwave power, frequency and neutral gas pressure but increases with the magnetic field strength, most importantly with the value of the minimum-B field. Experiments in pulsed operation mode have indicated the presence of the hump only when microwave power is applied, confirming that the origi…

010302 applied physics[PHYS]Physics [physics]High energyMaterials scienceScatteringAstrophysics::High Energy Astrophysical Phenomena[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]scatteringElectronhiukkaskiihdyttimetCondensed Matter Physicselektronit01 natural sciences7. Clean energyIon source010305 fluids & plasmasNuclear Energy and Engineering0103 physical sciencessirontaRadio frequencyAtomic physics
researchProduct

Multiple vibrational resonances in the Raman spectra of liquid ethanes

1990

The Raman spectra of liquid ethane, ethane-d3 and ethane-d6 were recorded and analysed. The CH3 and CD3 stretching regions were computer resolved using Cauchy-Gaussian and Voigt functions to account for asymmetric band shapes. Multiple vibrational resonances were investigated using the wavenumbers and observed intensities in these regions. The developed basis functions show strong mixing of the levels in these regions. In general the resonances appear to be less strong in the liquid phase than reported in previous studies of the gaseous state. Some new assignments in the liquid-state spectra of ethanes could be suggested.

010304 chemical physicsChemistryComputer aidLiquid phaseBasis function02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsSpectral linesymbols.namesakeLiquid stateNuclear magnetic resonance0103 physical sciencessymbolsWavenumberGeneral Materials ScienceAstrophysics::Earth and Planetary AstrophysicsPhysics::Chemical Physics0210 nano-technologyRaman spectroscopySpectroscopyMixing (physics)Journal of Raman Spectroscopy
researchProduct

APOGEE Data Releases 13 and 14: Data and Analysis

2018

Data and analysis methodology used for the SDSS/APOGEE Data Releases 13 and 14 are described, highlighting differences from the DR12 analysis presented in Holtzman (2015). Some improvement in the handling of telluric absorption and persistence is demonstrated. The derivation and calibration of stellar parameters, chemical abundances, and respective uncertainties are described, along with the ranges over which calibration was performed. Some known issues with the public data related to the calibration of the effective temperatures (DR13), surface gravity (DR13 and DR14), and C and N abundances for dwarfs (DR13 and DR14) are highlighted. We discuss how results from a data-driven technique, Th…

010308 nuclear & particles physicsLibrary scienceFOS: Physical sciencesAstronomy and Astrophysics01 natural sciencesAstrophysics - Astrophysics of GalaxiesAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)0103 physical sciencesNational laboratoryAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)ComputingMilieux_MISCELLANEOUSSolar and Stellar Astrophysics (astro-ph.SR)Mathematics
researchProduct

The high-resolution far-infrared spectrum of methane at the SOLEIL synchrotron

2010

International audience; As a tetrahedral molecule, methane has no permanent dipole moment. Its spectrum, however, displays faint absorption lines in the THz region, due to centrifugal distorsion effects. This is important for planetary applications since this region is used to measure methane concentration in some planetary atmospheres, in particular on Titan. Up to now, all measurements relied either on some old low resolution infrared absorption spectra, or on high resolution Stark measurements for low J values only. Even if these results have been reexamined recently [E. H. Wishnow, G. S. Orton, I. Ozier and H. P. Gush, J. Quant. Spectrosc. Radiat. Transfer 103, 102-117 (2007)], it seeme…

010504 meteorology & atmospheric sciencesAbsorption spectroscopyAnalytical chemistrySynchrotron radiationFar infrared7. Clean energy01 natural sciencesSpectral linelaw.inventionOpticsFar infraredlaw0103 physical sciencesAbsorption (logic)010303 astronomy & astrophysicsSpectroscopy0105 earth and related environmental sciencesPhysicsRadiationSynchrotron radiationbusiness.industryResolution (electron density)BremsstrahlungAtomic and Molecular Physics and OpticsSynchrotron[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry13. Climate action[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistrybusinessTitanMethaneLine intensities
researchProduct